AI Article Synopsis

  • Marine microorganisms, specifically Micrococcus luteus, can produce polyhydroxybutyrate (PHB), a biodegradable polymer with various medical and industrial uses.
  • Researchers optimized growth conditions, using glucose and ammonium sulfate, leading to a significant increase in PHB production.
  • The study demonstrates that M. luteus can achieve high yields of PHB, indicating its potential for large-scale production and environmental benefits.

Article Abstract

Marine microorganisms are reported to produce polyhydroxybutyrate (PHB) that has wide range of medical and industrial applications with the advantage of biodegradability. PHBs are synthesized as an energy and carbon storage element under metabolic pressure. The scope of this work is enhancing PHB production using marine microbial isolate, Micrococcus luteus by selectively optimizing various growth conditions such as different media components and growth parameters that influence the cell growth and PHB production were sampled. Micrococcus luteus produced 7.54 g/L of PHB utilizing glucose as a carbon source and ammonium sulphate as a nitrogen source with maximum efficiency. The same optimized operational conditions were further employed in batch fermentation over a time span of 72 h. Interestingly higher cell dry weight of 21.52 g/L with PHB yield of 12.18 g/L and 56.59% polymer content was observed in batch fermentation studies at 64 h. The chemical nature of the extracted polymer was validated with physio-chemical experiments and was at par with the commercially available PHB. This study will spotlight M. luteus as a potential source for large-scale industrial production of PHB with reducing environmental pollutions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.07.029DOI Listing

Publication Analysis

Top Keywords

micrococcus luteus
12
phb production
8
batch fermentation
8
phb
7
production
4
production characterization
4
characterization biodegradable
4
biodegradable polyhydroxybutyrate
4
polyhydroxybutyrate micrococcus
4
luteus
4

Similar Publications

A Screen of Traditional Chinese Medicinal Plant Extracts Reveals 17 Species with Antimicrobial Properties.

Antibiotics (Basel)

December 2024

Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA.

Antimicrobial resistance (AMR) is a growing threat that undermines the effectiveness of global healthcare. The Centers for Disease Control and Prevention and the World Health Organization have identified numerous microbial organisms, particularly members of the ESKAPEE pathogens, as critical threats to global health and economic security. Many clinical isolates of these pathogens have become completely resistant to current antibiotics, making treatment nearly impossible.

View Article and Find Full Text PDF

Embleporicin: A Novel Class I Lanthipeptide from the Actinobacteria sp. NF3.

Antibiotics (Basel)

December 2024

Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.

Genome mining has emerged as a revolutionary tool for discovering new ribosomally synthesized and post-translationally modified peptides (RiPPs) in various genomes. Recently, these approaches have been used to detect and explore unique environments as sources of RiPP-producing microorganisms, particularly focusing on endophytic microorganisms found in medicinal plants. Some endophytic actinobacteria, especially strains of , are notable examples of peptide producers, as specific biosynthetic clusters encode them.

View Article and Find Full Text PDF

Introduction: Lactic acid bacteria are prized for their probiotic benefits and gut health improvements. This study assessed five LAB isolates from Neera, with RAMULAB51 (, GenBank ON171686.1) standing out for its high hydrophobicity, auto-aggregation, antimicrobial activity, and enzyme inhibition.

View Article and Find Full Text PDF

Introduction: Grapevine ( L.), one of the economically important fruit crops cultivated worldwide, harbours diverse endophytic bacteria (EBs) responsible for managing various fungal diseases. Anthracnose () (Penz.

View Article and Find Full Text PDF

Background: Fleas are insect vectors that transmit several Gram-negative bacterial pathogens acquired by ingesting infected vertebrate blood. To combat foodborne illness, insect midgut epithelial cells are armed with efficient microbial recognition and control systems, such as the immune deficiency (IMD) pathway that regulates the expression of antimicrobial peptides (AMPs). However, despite their medical and veterinary importance, relatively little is known about the IMD signaling pathway and production of AMPs in the digestive tract of cat fleas (Ctenocephalides felis).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!