Upgrading bio-oil model compound over bifunctional Ru/HZSM-5 catalysts in biphasic system: Complete hydrodeoxygenation of vanillin.

J Hazard Mater

School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea. Electronic address:

Published: February 2022

A complete hydrodeoxygenation(HDO) of vanillin to yield cycloalkanes was performed using bifunctional Ru loaded HZSM-5 catalysts with different metal loadings (0.1, 0.5, 1, 3, and 5 wt%) and Si/Al ratios (Si/Al = 23,300) in n-octane/water biphasic system. Both the reaction pathway and product distribution were influenced by the metal/acid balance of the catalysts. Higher metal/acid ratio promoted C-C cleavage reaction, resulting in the increased yield of cyclohexane. Synergetic effect of metal and acid sites was observed in the bifunctional catalyst, attaining as high as 40-fold increase of metal efficiency in the ring hydrogenation reaction, compared to lone metal site catalyst. The effect of solvent composition was evaluated, revealing that the presence of water promoted the overall HDO reaction. By balancing metal/acid and introducing appropriate solvent system, efficient catalytic system that minimized carbon loss and improved metal efficiency for vanillin HDO was obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126525DOI Listing

Publication Analysis

Top Keywords

biphasic system
8
metal efficiency
8
metal
5
upgrading bio-oil
4
bio-oil model
4
model compound
4
compound bifunctional
4
bifunctional ru/hzsm-5
4
ru/hzsm-5 catalysts
4
catalysts biphasic
4

Similar Publications

Temperature profoundly impacts organismal physiology and ecological dynamics, particularly affecting ectothermic species and making them especially vulnerable to climate changes. Although complex physiological processes usually involve dozens of enzymes, empirically it is found that the rates of these processes often obey the Arrhenius equation, which was originally derived for single-enzyme-catalyzed reactions. Here we have examined the temperature scaling of the early embryonic cell cycle, with the goal of understanding why the Arrhenius equation approximately holds and why it breaks down at temperature extremes.

View Article and Find Full Text PDF

Study of the hydrodynamic parameters in an internal flat-plate airlift reactor for the increased degradation of newspaper by .

Environ Technol

January 2025

Colegio de Postgraduados, Posgrado de Edafología, Microbiología de Suelos, Montecillo, Estado de México, México.

The aim of our study was to characterize the hydrodynamics and mass transfer in a novel internal flat-plate airlift cylindrical reactor to increase the biodegradation of newspaper. We evaluated the degradation kinetics of newspaper in a batch culture with . Gas holdup, mixing time, the Reynolds number, and volumetric mass transfer coefficient () properties were characterized in biphasic and triphasic systems in order to optimize their operational conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The biphasic system offers a unique approach for complex catalytic processes by combining photocatalysis with hydrogenation, highlighting both its potential and accompanying challenges.
  • Researchers utilized metal-organic frameworks (MOFs) and CdS nanorods to create a dual-layer Pickering emulsion that effectively separates the photocatalytic hydrogen evolution reaction (HER) in the aqueous phase from oil-soluble hydrogenation.
  • This innovative setup achieved an impressive hydrogenation yield of 187.37 mmol·g-1·h-1 and a high apparent quantum yield of 43.24%, demonstrating significant improvements over traditional methods and providing valuable insights for future tandem catalytic processes.
View Article and Find Full Text PDF

Development and thorough evaluation of a multi-omics sample preparation workflow for comprehensive LC-MS/MS-based metabolomics, lipidomics and proteomics datasets.

Talanta

December 2024

Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia.

The importance of sample preparation selection if often overlooked particularly for untargeted multi-omics approaches that gained popularity in recent years. To minimize issues with sample heterogeneity and additional freeze-thaw cycles during sample splitting, multiple -omics datasets (e.g.

View Article and Find Full Text PDF

Solid lipid nanoparticles for increased oral bioavailability of acalabrutinib in chronic lymphocytic leukaemia.

Discov Nano

December 2024

Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India.

Acalabrutinib (ACP) is a first-line treatment for chronic lymphocytic leukemia but suffers from poor and variable oral bioavailability due to its pH-dependent solubility, CYP3A4 metabolism, and P-gp efflux. Thus, the objective of this study was to improve the solubility and dissolution behaviour, in turn enhancing bioavailability, by formulating solid lipid nanoparticles (SLNs). ACP loaded SLNs (ACP-SLNs) were prepared via solvent-free hot emulsification followed by a double sonication process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!