Bisphenol A (BPA) is widely applied in industrial products and household products, leading to ubiquitous occurrences in environmental and biological samples. However, knowledge on human internal exposure to bisphenol analogues remains limited. Our study determined nine bisphenol analogues in urine samples collected from 1168 South China adults. BPA and bisphenol F (BPF) exhibited the highest detection frequencies in urine, i.e., 99.4% and 74.6%, respectively. BPA dominated over other analogues, with a median concentration of 1.74 μg/L, while BPF had a median concentration of 0.08 μg/L. Significant positive correlation was observed between urinary BPA and BPF (r = 0.201, p < 0.01), indicating similar exposure sources or pathways of these two chemicals. Urinary BPA concentrations were significantly correlated with age, marital status, drinking status and history of hyperlipidemia (p < 0.05). The median estimated daily intake (EDI) of ΣBPs (the sum concentrations of BPA, BPF and BPAF) was determined to be 53.6 ng/kg-bw/day for adults. The EDIs were much lower than the temporary tolerable reference dose of BPA recommended by the European Food Safety Authority, indicating the bisphenol analogues presented no obvious health risks to South China adults.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.148796DOI Listing

Publication Analysis

Top Keywords

bisphenol analogues
16
south china
12
china adults
12
internal exposure
8
exposure bisphenol
8
health risks
8
median concentration
8
urinary bpa
8
bpa bpf
8
bpa
7

Similar Publications

Endocrine Disrupting Toxicity of Bisphenol A and Its Analogs: Implications in the Neuro-Immune Milieu.

J Xenobiot

January 2025

Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.

Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that are able to interfere with hormonal systems and alter their physiological signaling. EDCs have been recognized as a public health issue due to their widespread use, environmental persistence and the potential levels of long-term exposure with implications in multiple pathological conditions. Their reported adverse effects pose critical concerns about their use, warranting their strict regulation.

View Article and Find Full Text PDF

The obesogenic effects of Bisphenol A and its analogues are differentially regulated via PPARγ transactivation in mouse 3T3-L1 cells.

Toxicol In Vitro

January 2025

Environmental Health Science and Research Bureau (EHSRB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada. Electronic address:

Exposure to environmental pollutants with obesogenic activity is being recognised as one of the contributing factors to the obesity epidemic. Bisphenol A (BPA) has been shown to stimulate adipogenesis in both human and mouse preadipocytes, to increase body weight and affect lipid metabolism in animal and epidemiological studies. Regulatory action and public concern has prompted industry to replace BPA with other structurally similar analogues that may have similar effects.

View Article and Find Full Text PDF

Exploring factors influencing the spatial distribution and seasonal changes of BPA, TBBPA, and 20 analogs in China's marginal seas.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.

As emerging pollutants, bisphenol A (BPA), tetrabromobisphenol A (TBBPA) and its analogs have become widespread in the coastal environment of China. To investigate the occurrence of these novel contaminants in Chinese marginal sea, 176 seawater and 88 sediment samples were collected from the Yellow Sea and East China Sea. In seawater and sediment, the detection rates of TBBPA are 83.

View Article and Find Full Text PDF

In this study, the genotoxic effects of three different bisphenols (BPAF, BPF and BPS) and their mixture were assessed in the crab Carcinus aestuarii. Crabs were exposed for 7 and 14 days to 300 ng/L of BPA analogues, alone or as a mixture (100 ng/L for each compound). After 7- and 14-day exposure, gills and hepatopancreas were sampled from crabs to evaluate damage to DNA by quantifying the levels of DNA single- and double-strand breaks.

View Article and Find Full Text PDF

Repeated measurements of urinary bisphenol A and its analogues in relation to sperm DNA damage.

J Hazard Mater

January 2025

Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China. Electronic address:

Bisphenol A (BPA), a common endocrine disrupting chemical (EDC), has shown detrimental effects on sperm quality and function in experimental models. However, epidemiological evidence is inconsistent and also there exists a notable lack of data on its analogues, such as bisphenol F (BPF) and bisphenol S (BPS). To investigate the relationships between BPA, BPF and BPS exposures and sperm DNA damage, we conducted a cross-sectional study recruiting 474 Chinese men from an infertility clinic in Wuhan, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!