Little is known about the relationship between traffic congestion and antimony (Sb) distribution in street dust, which is essential for Sb control and emission reduction in urban areas. Sb concentrations and mass load of the street dust collected in 19 cities of China were determined before investigating the mechanism of traffic influence on Sb distribution through diverse statistical means. The results showed that the Sb concentrations in each city were 1.10-4.76 times higher than the local background values. Sb concentrations in transportation areas were significantly higher than those in residential and industrial areas, and were significantly affected by road network density. The effect of congestion on Sb load of street dust was influenced by vehicle flowrate. Only when the vehicle flowrate was high, the traffic congestion would promote the increase of Sb load obviously. The improved accounting method showed that the Sb dissipation from brake wear in major Chinese cities were higher than that in Stockholm, Sweden, in 2005. The latent path analysis illustrated that a 1% increase in congestion index was correlated with a 0.886% increase in the Sb load. Compared with Switzerland, which has a typical industrialized Sb consumption pattern, China needs to recycle brake pads in addition to taking various measures to alleviate traffic congestion and reduce brake pad wear, despite the fact that the maximum health risk of Sb was far below the safety threshold. This study will provide valuable insights for urban traffic management and brake pad recycling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.113219 | DOI Listing |
Environ Sci Technol
January 2025
U.S. Environmental Protection Agency, E205-02, Research Triangle Park, P.O. Box 12055, Durham, North Carolina 27711, United States.
The complex, varied composition (i.e., rubbers/elastomers, carbon black, fillers, additives, and embedded road materials) and wide density range of tire road wear particles (TRWPs) present challenges for their isolation and identification from environmental matrices.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou, GR-15773 Athens, Greece.
The recycling of Carbon Fibre-Reinforced Polymers (CFRPs) is becoming increasingly crucial due to the growing demand for sustainability in high-performance industries such as automotive and aerospace. This study investigates the impact of two chemical recycling techniques, chemically assisted solvolysis and plasma-enhanced solvolysis, on the morphology and properties of carbon fibres (CFs) recovered from end-of-life automotive parts. In addition, the effects of fibre sizing are explored to enhance the performance of the recycled carbon fibres (rCFs).
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; International Laboratory for Air Quality and Health, Faculty of Science, School of Earth & Atmospheric Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia. Electronic address:
Genus Stachybotrys (Stachybotryaceae, Hypocreales) requires high humidity to grow and represents one of the most notorious fungi associated with suspected illness in moist buildings. If Stachybotrys conidia are found in settled indoor dusts, their presence may indicate water intrusion and mold infestation revealed after dismantling the building structures. This study describes detection of Stachybotrys growth hidden inside the structures of three buildings in Finland.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Micronization Laboratory, Łukasiewicz Research Network-New Chemical Syntheses Institute, Sowińskiego 11 Street, 44-101 Gliwice, Poland.
Polymer concrete is a promising material with applications in construction and architecture; however, guidelines for its design and optimization are not well-established in the literature. This study aimed to evaluate how resin volume fraction and aggregate size distribution affect key properties of polyester polymer concrete, including flexural strength, compressive strength, water absorption, and material cost. Three types of quartz aggregates with different particle size distributions were used, as follows: small (below 0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
Jharkhand is a minerally prosperous state with geogenic and industrial origins of metals. This study assesses the seasonal variation of pseudo-total metal contents (Cr, Ni, Pb, Zn, Mn, Cu, Fe, Mg, Al) and related contamination and risks in indoor dust, street dust, and soils of four major cities of Jharkhand. Across cities and seasons, Zn, Cu, and Pb were the most common pollutants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!