Chemical characterization of plastics ingested by wildlife helps identify sources of plastic pollution in nature and informs assessments of exposure risk to contaminants. In 2016, Red Phalaropes (Phalaropus fulicarius) were found dead on the north coast of British Columbia, Canada, during their southward migration. Previously, ingested particles suspected to be plastics were reported upon gut examination in all carcasses collected, which likely contributed to mortality. Here, we provide chemical identification of the ingested particles using Fourier Transform Infrared (FTIR) spectroscopy. Polymer identification was successful for 41 of the 52 analysed particles (79%): 41 (79%) were confirmed as plastics, 6 (11%) were not plastics, and 5 (10%) could not be identified. The most commonly ingested plastics were polyethylene (42%) and polypropylene (23%), both of which are known to float in the marine environment. Our study highlights the vulnerability of surface foraging seabirds to plastic pollution in the marine environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2021.112640 | DOI Listing |
Adv Biotechnol (Singap)
December 2024
School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China.
Bio-nanopore technology holds great promise in biomacromolecule detection, with its high throughput and low cost positioning it as an ideal detection tool. This technology employs a unique detection mechanism that utilizes nanoscale pores to rapidly and sensitively convert biological molecules interactions into electrical signals, enabling real-time, single-molecule detection with exceptional sensitivity. This review focuses on the latest advancements in this technology across various domains, including DNA and RNA sequencing, protein detection, and small molecule identification.
View Article and Find Full Text PDFGenetics
January 2025
Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
Forward genetic screens of mutant populations are fundamental for functional genomics studies. However, isolating independent mutant alleles to molecularly identify causal genes is challenging in species recalcitrant to genetic manipulation. Here, we demonstrate that classic seed EMS mutagenesis coupled with genome sequencing can overcome this limitation in sorghum.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
Plants control their stomatal apertures to optimize carbon dioxide uptake and water loss. Stomata open in response to light through the phosphorylation of the penultimate residue, Thr, of plasma membrane (PM) H+-ATPase in guard cells. Stomata close in response to drought and the phytohormone abscisic acid (ABA), and ABA suppresses the light-induced activation of PM H+-ATPase.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Objective: Cyclin-dependent kinase (CDK)-4/6 inhibitors have significantly improved outcomes in several cancers but can also induce various organ system toxicities, including musculoskeletal disorders. This study aimed to comprehensively characterize the musculoskeletal adverse events (MSAEs) associated with CDK4/6 inhibitors based on real-world data.
Methods: Reports of MSAEs linked to CDK4/6 inhibitors from the first quarter (Q1) of 2015 and 2023 Q4 were extracted from the FAERS.
Sci Rep
January 2025
Research Institute, National Cancer Center, Goyang-si, 10408, Gyeonggi, Republic of Korea.
The VHL-containing cullin-RING E3 ubiquitin ligase (CRL2) complex is an E3 ligase commonly used in targeted protein degradation (TPD). Hydroxyproline-based ligands that mimic VHL substrates have been developed as anchor molecules for proteolysis-targeting chimeras (PROTACs) in TPD. To expand the chemical space for VHL ligands, we conducted fragment screening using VHL-ELOB-ELOC (VBC) proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!