The statistical physics modeling is a reliable approach to interpret and understand the adsorption mechanism of both organic and inorganic adsorbates. Herein, a theoretical study of the adsorption mechanism of anionic dyes, namely reactive blue 4 (RB4), acid blue 74 (AB74), and acid blue 25 (AB25), on bone char was performed with a multilayer statistical physics model. This model was applied to fit the equilibrium adsorption data of these dyes at 298-313 K and pH 4. Results indicated that the global number of formed dye layers on the bone char varied from 1.62 to 2.24 for RB4, AB74, and AB25 dyes depending on the solution temperature where the saturation adsorption capacities ranged from 0.08 to 0.12 mmol/g. Dye molecular aggregation was also identified for these dyes where dimers and trimers prevailed at different operating conditions especially for adsorbates RB4 and AB74. Adsorption mechanism of these dyes was multimolecular and endothermic with adsorption energies from 10.6 to 20.8 kJ/mol where van der Waals interactions and hydrogen bonding could be present. This investigation contributes to understand the physicochemical variables associated to dye adsorption using low-cost adsorbents as bone char.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-15264-9 | DOI Listing |
Ecotoxicol Environ Saf
December 2024
Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
Biochar is widely recognized as an effective amendment for soils contaminated with cadmium (Cd). However, the properties and elemental compositions of biochar derived from different feedstocks may significantly impact the transfer of Cd in the soil-rice system. This study conducted a two-year field trial in Cd-contaminated paddy soil.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
In this study, the conversion of bones (waste of food industry) into bone char is described. The presence of calcium phosphate and graphitic carbon gives bone char unique properties, with different possible uses. The catalytic behavior of bone char modified with chlorosulfonic acid is tested as reusable and eco-friendly solid acid biocatalyst in synthesis of pyrimidine-5-carbonitrile derivatives.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Improvement and Conservation of Cultivated Soils Research Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
Contamination by spent engine oil represents a significant global environmental challenge as it poses a major hazard to human health, animals, plants, microorganisms, the soil ecosystem, and aquatic ecosystems. This study assumes that some amendments differ significantly in their ability to degrade petroleum hydrocarbons. Therefore, this incubation study was conducted to investigate the effect of different types of inorganic and organic amendments (zeolite, bone char, banana leaves biochar, and wood chips biochar) on carbon emissions (CO-C) and the kinetics of total petroleum hydrocarbons (TPHC) degradation in artificial petroleum-contaminated soil.
View Article and Find Full Text PDFJ Am Coll Radiol
November 2024
Specialty Chair, University of Iowa Hospitals and Clinics, Iowa City, Iowa.
Thoracic back pain is a common site for inflammatory, neoplastic, metabolic, infectious, and degenerative conditions, and may be associated with significant disability and morbidity. Uncomplicated acute thoracic back pain and/or radiculopathy does not typically warrant imaging. Imaging may be considered in those patients who have persistent pain despite 6 weeks of conservative treatment.
View Article and Find Full Text PDFSci Total Environ
December 2024
Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China.
Bone waste from slaughtering is an abundant but underutilized resource. Promoting its exploitation can reduce the environmental burden and achieve energy recovery. Bone char, a solid material prepared by the thermochemical conversion of animal bone, has a unique and rich mesoporous structure and ionic polarity sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!