The clinical significance of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) RNA in stool remains uncertain. We found that extrapulmonary dissemination of infection to the gastrointestinal tract, assessed by the presence of SARS-CoV-2 RNA in stool, is associated with decreased coronavirus disease 2019 (COVID-19) survival. Measurement of SARS-CoV-2 RNA in stool may have utility for clinical risk assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406863PMC
http://dx.doi.org/10.1093/cid/ciab623DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 rna
12
rna stool
12
severe acute
8
acute respiratory
8
respiratory syndrome
8
syndrome coronavirus
8
associated decreased
8
decreased coronavirus
8
coronavirus disease
8
disease 2019
8

Similar Publications

Unlabelled: Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection.

View Article and Find Full Text PDF

Development of a portable multi-step microfluidic device for point-of-care nucleic acid diagnostics.

Anal Chim Acta

January 2025

State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China. Electronic address:

Background: The COVID-19 pandemic has significantly affected global health, economies, and societies, and highlighted the urgent need for rapid, sensitive, affordable, and portable diagnostic devices for respiratory diseases, especially in areas with limited resources. In recent years, there has been rapid development in integrated equipments using microfluidic chips and biochemical detection technologies. However, these devices are expensive and complex to operate, showing limited feasibility for in point of care tests (PoCTs).

View Article and Find Full Text PDF

Protocol for investigating intracellular microbial diversity using single-cell RNA-seq in immune cells of SARS-CoV-2-positive and recovered patients.

STAR Protoc

January 2025

Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Intracellular microorganisms like viruses and bacteria impact immune cell function. However, detection of these microbes is challenging as the majority exist in a non-culturable state. This protocol presents detailed steps to investigate intracellular microbial diversity using single-cell RNA sequencing (scRNA-seq) in immune-cells of SARS-CoV-2-positive and recovered patients.

View Article and Find Full Text PDF

Introduction: The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age.

View Article and Find Full Text PDF

One of the hallmarks of RNA viruses is highly structured untranslated regions (UTRs) which are often essential for viral replication, transcription, or translation. In this report, we discovered a series of coumarin derivatives that bind to a four-way RNA helix called SL5 in the 5' UTR of the SARS-CoV-2 RNA genome. To locate the binding site, we developed a sequencing-based method namely cgSHAPE-seq, in which an acylating probe was directed to crosslink with the 2'-OH group of ribose at the binding site to create read-through mutations during reverse transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!