Multiporous metal-organic frameworks (MOFs) have emerged as a subclass of highly crystalline inorganic-organic materials, which are endowed with high surface areas, tunable pores, and fascinating nanostructures. Heterostructured MOF-on-MOF composites are recently becoming a research hotspot in the field of chemistry and materials science, which focus on the assembly of two or more different homogeneous or heterogeneous MOFs with various structures and morphologies. Compared with one single MOF, the dual MOF-on-MOF composites exhibit unprecedented tunability, hierarchical nanostructure, synergistic effect, and enhanced performance. Due to the difference of inorganic metals and organic ligands, the lattice parameters in a, b, and c directions in the single crystal cells could bring about subtle or large structural difference. It will result in the composite material with distinct growth methods to obtain secondary MOF grown from the initial MOF. In this review, the authors wish to mainly outline the latest synthetic strategies of heterostructured MOF-on-MOFs and their derivatives, including ordered epitaxial growth, random epitaxial growth, etc., which show the tutorial guidelines for the further development of various MOF-on-MOFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202100607 | DOI Listing |
Small
January 2025
Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.
Metal-organic frameworks (MOFs) are rigorously investigated as promising candidates for CO capture and conversion. MOF-on-MOF heterostructures integrate bolstered charger carrier separation with the intrinsic advantages of MOF components, exhibiting immense potential to substantially escalate the efficiency of photocatalytic CO reduction (CORR). However, the structural and compositional complexity poses significant challenges to the controllable development of these heterostructures.
View Article and Find Full Text PDFEnviron Res
January 2025
Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao-Tung University, Taipei, 11221, Taiwan. Electronic address:
Ground-level ozone (O) can infiltrate indoor environments, severely impacting the environment and human health. Moisture-induced catalyst deactivation is a major challenge in catalytic ozone removal. MOF-template-derived heterojunctions supported by carbon materials can prevent chemisorption of water vapor at active sites.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, PR China. Electronic address:
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with strong carcinogenicity and mutagenicity, which cause great harm to the environment and food. Herein, a composite (NH-MIL-88@PCN-224) was prepared through a guest PCN-224 in situ grown on the host NH-MIL-88 by a surfactant-assisted growth strategy, and successfully applied for solid-phase microextraction (SPME) of PAHs from milk samples. The prepared SPME coatings exhibited high extraction and adsorption capacity for PAHs due to their porous structure, ultra-large specific surface area, strong π-π stacking, hydrophobic interactions and size-matching effects.
View Article and Find Full Text PDFAcc Chem Res
November 2024
Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
ConspectusOverflowing metal-organic frameworks (MOFs) have been synthesized from a wide range of metal and organic components for specific purposes and intellectual curiosity. Each MOF has unique chemical and structural characteristics directed by the incorporated components, metal ions (or clusters), organic linkers, and their intrinsic coordination interactions. These incorporated components and structural characteristics are two pivotal factors influencing MOFs' fundamental properties and subsequent applications.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China. Electronic address:
Considering the unexpected nuclear power waste emission and potential nuclear leakage, the exploration of robust materials for the effective capture and storage of radioactive iodine is of great importance but still remains a challenge. In this work, we report the rational synthesis of functionalized NH-UiO-66-on-ZIF-67 architecture to enhance the static adsorption and retention of volatile iodine. Such MOF-on-MOF heterostructures was fabricated through seeding ZIF-67 core on the surface of NH-UiO-66 satellite via a facile polyvinylpyrrolidone (PVP) regulated internal extended growth strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!