Download full-text PDF

Source
http://dx.doi.org/10.1111/cga.12437DOI Listing

Publication Analysis

Top Keywords

homozygous variant
4
variant abca3
4
abca3 associated
4
associated severe
4
severe respiratory
4
respiratory distress
4
distress early
4
early neonatal
4
neonatal death
4
homozygous
1

Similar Publications

Unraveling the genetic mysteries of spinal muscular atrophy in Chinese families.

Orphanet J Rare Dis

January 2025

The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.

Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.

Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.

View Article and Find Full Text PDF

Biallelic variants in SREBF2 cause autosomal recessive spastic paraplegia.

J Genet Genomics

January 2025

Department of Medical Genetics and Center for Rare Diseases, the Second Affiliated Hospital of Zhejiang University School of Medicine, and Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang 310009, China; Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang 311100, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; Lead contact. Electronic address:

Hereditary spastic paraplegias (HSPs) refer to a genetically and clinically heterogeneous group of neurodegenerative disorders characterized by the degeneration of motor neurons. To date, a significant number of patients still have not received a definite genetic diagnosis. Therefore, identifying unreported causative genes continues to be of great importance.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinosis 11 (CLN11) presenting with early-onset cone-rod dystrophy and learning difficulties.

Neurogenetics

January 2025

Department of Neuroscience and Behavioural Sciences, School of Medicine at Ribeirão Preto, University of São Paulo, Bandeirantes Av. 3900, Ribeirão Preto, São Paulo, 14040-900, Brazil.

Neuronal Ceroid Lipofuscinosis 11 (CLN11) is an ultra-rare subtype of adult-onset Neuronal Ceroid Lipofuscinosis. Its phenotype is variable and not fully known. A 21-year-old man was evaluated in our neurogenetic outpatient clinic for early onset complex phenotype, including learning difficulties, cerebellar ataxia, cone-rod dystrophy, epilepsy, and dystonia.

View Article and Find Full Text PDF

Background: People with cystic fibrosis (CF) variants that exhibit residual function (RF) of the CF transmembrane conductance regulator are considered to have a milder disease; however, the spectrum of CF phenotype within the different RF variants has not been extensively investigated. The aim of the present study was to characterise the spectrum of CF disease severity in people with CF (pwCF) carrying different RF variants, using the European Cystic Fibrosis Society Patient Registry (ECFSPR) data.

Methods: A retrospective cross-sectional and longitudinal cohort study included data from the ECFSPR during 2008-2016.

View Article and Find Full Text PDF

Introduction: Breast cancer is the predominant form of malignancy among women. Polymorphisms in DNA repair genes, such as X-ray repair cross complementing 3 (XRCC3), can influence an individual's capability to repair damaged DNA. This can result in genetic instability and potentially contribute to the development of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!