Impact of rescanning and repositioning on radiomic features employing a multi-object phantom in magnetic resonance imaging.

Sci Rep

Department of Diagnostic and Interventional Radiology, Institute for Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.

Published: July 2021

Our purpose was to analyze the robustness and reproducibility of magnetic resonance imaging (MRI) radiomic features. We constructed a multi-object fruit phantom to perform MRI acquisition as scan-rescan using a 3 Tesla MRI scanner. We applied T2-weighted (T2w) half-Fourier acquisition single-shot turbo spin-echo (HASTE), T2w turbo spin-echo (TSE), T2w fluid-attenuated inversion recovery (FLAIR), T2 map and T1-weighted (T1w) TSE. Images were resampled to isotropic voxels. Fruits were segmented. The workflow was repeated by a second reader and the first reader after a pause of one month. We applied PyRadiomics to extract 107 radiomic features per fruit and sequence from seven feature classes. We calculated concordance correlation coefficients (CCC) and dynamic range (DR) to obtain measurements of feature robustness. Intraclass correlation coefficient (ICC) was calculated to assess intra- and inter-observer reproducibility. We calculated Gini scores to test the pairwise discriminative power specific for the features and MRI sequences. We depict Bland Altmann plots of features with top discriminative power (Mann-Whitney U test). Shape features were the most robust feature class. T2 map was the most robust imaging technique (robust features (rf), n = 84). HASTE sequence led to the least amount of rf (n = 20). Intra-observer ICC was excellent (≥ 0.75) for nearly all features (max-min; 99.1-97.2%). Deterioration of ICC values was seen in the inter-observer analyses (max-min; 88.7-81.1%). Complete robustness across all sequences was found for 8 features. Shape features and T2 map yielded the highest pairwise discriminative performance. Radiomics validity depends on the MRI sequence and feature class. T2 map seems to be the most promising imaging technique with the highest feature robustness, high intra-/inter-observer reproducibility and most promising discriminative power.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271025PMC
http://dx.doi.org/10.1038/s41598-021-93756-xDOI Listing

Publication Analysis

Top Keywords

radiomic features
12
discriminative power
12
features
10
magnetic resonance
8
resonance imaging
8
turbo spin-echo
8
sequence feature
8
feature robustness
8
pairwise discriminative
8
shape features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!