RSV neutralization assays - Use in immune response assessment.

Vaccine

PATH, Seattle, WA, USA. Electronic address:

Published: July 2021

Respiratory syncytial virus (RSV) is a leading cause of respiratory illness among children and infants worldwide, yet no licensed vaccine exists to reduce the risk of disease. At least 16 RSV vaccine candidates are currently in clinical development and many are designed to induce robust virus neutralizing immune responses. RSV neutralizing antibody (nAb)-mediated interventions such as intravenous immunoglobulin (IVIG) and palivizumab provide passive protection against serious lower respiratory tract disease due to RSV, validating nAbs as a correlate of protection. To identify correlates of protection for vaccine candidates that have demonstrated their protective efficacy, an investigator can use assays designed to measure nAb responses. However, there is no standard method of measurement; individual laboratories have developed their own methods to measure the ability of nAbs to reduce the infectivity of a defined virus dose in a variety of cell lines, leading to establishment of the broad variety of RSV neutralization assay formats currently in use. Standardizing the RSV neutralization assay is an essential step toward better assessment of nAb responses to vaccine candidates. Use of a common reference standard by all makes comparing the immunogenicity of different vaccine candidates feasible. In the context of vaccine development, the WHO 1 International Standard for Antiserum to RSV (RSV IS) has been shown to be suitable for harmonizing results across laboratories and assay formats used to measure nAb titers to RSV/A and RSV/B in human sera. This review describes the broad variety of RSV virus neutralization assay formats currently in use and the importance of the RSV IS for harmonization of results across formats and across laboratories. It also outlines good practices for key assay components and data analysis to promote the quality and consistency of measuring RSV nAb titers in serum specimens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2021.06.016DOI Listing

Publication Analysis

Top Keywords

vaccine candidates
16
rsv
12
rsv neutralization
12
neutralization assay
12
assay formats
12
disease rsv
8
measure nab
8
nab responses
8
broad variety
8
variety rsv
8

Similar Publications

A universal live vaccine platform against multiple serotypes Streptococcus suis based on polyvalent antigen protein.

Vaccine

January 2025

College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China. Electronic address:

Streptococcus suis (S. suis) is a major pathogen that poses a long-term threat to swine populations. Due to its foodborne transmission, this pathogen has recently emerged as a leading cause of meningitis in humans, presenting a significant public health challenge.

View Article and Find Full Text PDF

Childhood Tuberculosis-Advances in Treatment and Prevention.

Pediatr Pulmonol

January 2025

Department of Child Health School of Medical Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Tuberculosis (TB) in childhood presents a substantial global burden with nearly two million episodes of disease in children and adolescents annually. The majority of children who die from TB never receive appropriate treatment. Advancements in childhood TB treatments have been slow and there are many challenges with TB treatment in children.

View Article and Find Full Text PDF

Prevention of Infections Among Pediatric Solid Organ Transplant Recipients With Asplenia or Hyposplenism.

Pediatr Transplant

February 2025

Department of Pediatrics, Division of Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

Pediatric solid organ transplant (SOT) recipients with splenic dysfunction are at increased risk for infections, and tailored guidance on the management of asplenia/hyposplenism among SOT recipients is often lacking. The purpose of this article is to provide practice recommendations via a frequently asked questions (FAQs) format that focuses on three main domains: the identification of asplenia/hyposplenism among SOT recipients/candidates, prophylactic strategies for mitigating the risk of invasive disease associated with splenic dysfunction in the context of transplantation, and the provision of appropriate patient counseling on the risks associated with asplenia/hyposplenism. Answers to the FAQs are based on international expert opinion informed by practices for managing splenic dysfunction and associated data in other populations with asplenia.

View Article and Find Full Text PDF

Mpox, formerly known as monkeypox, is a zoonotic disease caused by the Mpox virus (MPXV), which has recently attracted global attention due to its potential for widespread outbreaks. Initially identified in 1958, MPXV primarily spreads to humans through contact with infected wild animals, particularly rodents. Historically confined to Africa, the virus has expanded beyond endemic regions, with notable outbreaks in Europe and North America in 2022, especially among men who have sex with men (MSM).

View Article and Find Full Text PDF

Soluble factors released by peripheral blood-derived CAR-NK cells cause bystander myeloid cell activation.

Front Immunol

January 2025

Tumor Vaccine and Biotechnology Branch, Office of Cellular Therapy and Human Tissues, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration (U.S. FDA), Silver Spring, MD, United States.

Introduction: CAR-T cell therapy is associated with life-threatening inflammatory toxicities, partly due to the activation and secretion of inflammatory cytokines by bystander myeloid cells (BMCs). However, due to limited clinical data, it is unclear whether CAR-NK cells cause similar toxicities.

Methods: We characterized the soluble factors (SFs) released by activated human CAR-T and CAR-NK cells and assessed their role in BMC activation (BMCA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!