Gender constitutes a major factor to consider when tailoring subtype-based therapies for tinnitus. Previous reports showed important differences between men and women concerning basic perceptual tinnitus characteristics (i.e., laterality, frequency, tinnitus loudness) as well as psychological reactions linked to this condition. Therapeutic approaches based on acoustic stimulation involve processes beyond a pure masking effect and consist of sound presentation temporarily altering or alleviating tinnitus perception via residual and/or lateral inhibition mechanisms. Presented stimuli may include pure tones, noise, and music adjusted to or modulated to filter out tinnitus pitch and therefore trigger reparative functional and structural changes in the auditory system. Furthermore, recent findings suggest that in tonal tinnitus, the presentation of pitch-adjusted sounds which were altered by a 10Hz modulation of amplitude was more efficient than unmodulated stimulation. In this paper, we investigate sex differences in the outcome of different variants of acoustic stimulation, looking for factors revealing predictive value in the efficiency of tinnitus relief.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.pbr.2021.04.010 | DOI Listing |
Elife
December 2024
Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University of Salzburg, Salzburg, Austria.
Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
Objective: What we hear may influence postural control, particularly in people with vestibular hypofunction. Would hearing a moving subway destabilize people similarly to seeing the train move? We investigated how people with unilateral vestibular hypofunction and healthy controls incorporated broadband and real-recorded sounds with visual load for balance in an immersive contextual scene.
Design: Participants stood on foam placed on a force-platform, wore the HTC Vive headset, and observed an immersive subway environment.
Proc Natl Acad Sci U S A
January 2025
Department of Neurobiology, Harvard Medical School, Boston, MA 02115.
The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Institute of Neuroscience (IONS), UCLouvain, Brussels, Belgium.
Experiencing music often entails the perception of a periodic beat. Despite being a widespread phenomenon across cultures, the nature and neural underpinnings of beat perception remain largely unknown. In the last decade, there has been a growing interest in developing methods to probe these processes, particularly to measure the extent to which beat-related information is contained in behavioral and neural responses.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Psychology, University of Lübeck, Lübeck, Germany.
Distraction is ubiquitous in human environments. Distracting input is often predictable, but we do not understand when or how humans can exploit this predictability. Here, we ask whether predictable distractors are able to reduce uncertainty in updating the internal predictive model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!