Talbot-Lau x-ray interferometry has been implemented to map electron density gradients in High Energy Density Physics (HEDP) experiments. X-ray backlighter targets have been evaluated for Talbot-Lau X-ray Deflectometry (TXD). Cu foils, wires, and sphere targets have been irradiated by 10-150 J, 8-30 ps laser pulses, while two pulsed-power generators (∼350 kA, 350 ns and ∼200 kA, 150 ns) have driven Cu wire, hybrid, and laser-cut x-pinches. A plasma ablation front generated by the Omega EP laser was imaged for the first time through TXD for densities >10 cm. Backlighter optimization in combination with x-ray CCD, image plates, and x-ray film has been assessed in terms of spatial resolution and interferometer contrast for accurate plasma characterization through TXD in pulsed-power and high-intensity laser environments. The results obtained thus far demonstrate the potential of TXD as a powerful diagnostic for HEDP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0043655 | DOI Listing |
Med Phys
January 2025
Breast Imaging Department, Red Cross Hospital Munich, Munich, Germany.
Background: A significant proportion of false positive recalls of mammography-screened women is due to benign breast cysts and simple fibroadenomas. These lesions appear mammographically as smooth-shaped dense masses and require the recalling of women for a breast ultrasound to obtain complementary imaging information. They can be identified safely by ultrasound with no need for further assessment or treatment.
View Article and Find Full Text PDFKidney360
December 2024
Department of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland.
Background: Structural analysis of soft biological tissues is conventionally done with destructive 2D histology. 3D information can be accessed with non-invasive imaging methods, such as X-ray micro-computed tomography (micro-CT). While attenuation-based X-ray imaging alone does not provide reasonable contrast with soft-tissue samples, the combination with contrast-enhancing staining has proven effective.
View Article and Find Full Text PDFMed Phys
December 2024
Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
Background: The complementary absorption contrast CT (ACT) and differential phase contrast CT (DPCT) can be generated simultaneously from an x-ray computed tomography (CT) imaging system incorporated with grating interferometer. However, it has been reported that ACT images exhibit better spatial resolution than DPCT images. By far, the primary cause of such discrepancy remains unclear.
View Article and Find Full Text PDFFor light-element materials, X-ray phase contrast imaging provides better contrast compared to absorption imaging. While the Fourier transform method has a shorter imaging time, it typically results in lower image quality; in contrast, the phase-shifting method offers higher image quality but is more time-consuming and involves a higher radiation dose. To rapidly reconstruct low-dose X-ray phase contrast images, this study developed a model based on Generative Adversarial Networks (GAN), incorporating custom layers and self-attention mechanisms to recover high-quality phase contrast images.
View Article and Find Full Text PDFBiomed Phys Eng Express
June 2024
Department of Physics, PO Box 64, FI-00014 University of Helsinki, Finland.
X-ray phase-contrast imaging has become a valuable tool for biomedical research due to its improved contrast abilities over regular attenuation-based imaging. The recently emerged Talbot-Lau interferometer can provide quantitative attenuation, phase-contrast and dark-field image data, even with low-brilliance x-ray tube sources. Thus, it has become a valid option for clinical environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!