A multispectral-sensor-based colorimetric reader for biological assays.

Rev Sci Instrum

Department of Physics, St. Lawrence University, 23 Romoda Dr., Canton, New York 13617, USA.

Published: June 2021

Tests that depend on changes in color are commonly used in biosensing. Here, we report on a colorimetric reader for such applications. The device is simple to construct and operate, making it ideal for research laboratories with limited resources or skilled personnel. It consists of a commercial multispectral sensor interfaced with a Raspberry Pi and a touchscreen. Unlike camera-based readers, this instrument requires no calibration of wavelengths by the user or extensive image processing to obtain results. We demonstrate its potential for colorimetric biosensing by applying it to the birefringent enzyme-linked immunosorbent assay. It was able to prevent certain false positives that the assay is susceptible to and lowered its limit of detection for glucose by an order of magnitude.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0040602DOI Listing

Publication Analysis

Top Keywords

colorimetric reader
8
multispectral-sensor-based colorimetric
4
reader biological
4
biological assays
4
assays tests
4
tests depend
4
depend changes
4
changes color
4
color commonly
4
commonly biosensing
4

Similar Publications

Quantitative determination of leptin hormone using gold nanoparticle-based lateral flow assay.

Mikrochim Acta

January 2025

Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, Türkiye.

A lateral flow assay (LFA) has been developed that can be used in point-of-care (PoC) use for the sensitive determination of leptin hormone. The limit of detection value was 0.158 ng/mL and the limit of quantification value was 0.

View Article and Find Full Text PDF

Determining the total antioxidant capacity (TAC) of biological samples is a valuable approach to measuring health status under oxidative stress conditions, such as infertility and type 2 diabetes. The Trolox equivalent antioxidant capacity (TEAC) assay is the most common approach to evaluating TAC in biological matrices. This assay is typically performed in clinical settings on a microtiter plate using a plate reader.

View Article and Find Full Text PDF

Monitoring the blood serum activity of L-asparaginase in children with acute lymphoblastic leukaemia (ALL) has been highly recommended to detect enzyme inactivation that can cause relapse and to avoid unwanted toxicity. Nevertheless, perhaps at least partially due to the lack of clinically approved commercially available kits or standardized and independently reproduced and validated in-house protocols, laboratory assay-based determination of the optimal doses of L-asparaginase is not carried out routinely. In this study, we adapted previously published protocols for two plate reader-based colorimetric methods, indooxine and Nessler, to measure asparaginase activity.

View Article and Find Full Text PDF

Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards. Here, we show how innovations in amplified biosensing, imaging, and data processing, coupled with deep learning, can help improve POCT. To demonstrate the performance of our approach, we present a rapid and cost-effective paper-based high-sensitivity vertical flow assay (hs-VFA) for quantitative measurement of cardiac troponin I (cTnI), a biomarker widely used for measuring acute cardiac damage and assessing cardiovascular risk.

View Article and Find Full Text PDF

Normal and damaged microorganisms are related to food safety. The colony-forming unit (CFU) assay and viability of microorganisms have broad applications in food. Traditionally, the CFU assay has been the benchmark for assessing microbial viability across various fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!