In the recent years, the advent of an efficient and compact laboratory-scale spectrometer for x-ray absorption spectroscopy experiments has been extensively reported in the literature. Such modern instruments offer the advantage to routinely use x-ray absorption spectroscopy on systematic studies, which is usually unconceivable at synchrotron radiation source facilities due to often limited time access. However, one limiting factor is the fact that due to laboratory x-ray source brightness compared to a synchrotron, two separate measures of the incoming and transmitted x-ray intensities, i.e., the so-called I and I, respectively, are usually required. Herein, we introduce and discuss an alternative approach for measuring I and I simultaneously. Based on the usage of harmonics arising naturally from the use of monochromator crystals, the reliability and robustness of our proposed approach is demonstrated through experiments at the Co K-edge measured using Co metal foil and at the Nd L-edge measured in NdO.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0046893DOI Listing

Publication Analysis

Top Keywords

x-ray absorption
12
absorption spectroscopy
12
spectroscopy experiments
8
x-ray
5
harmonics alternative
4
alternative method
4
method measuring
4
measuring x-ray
4
experiments laboratory
4
laboratory scale
4

Similar Publications

Widespread geogenic uranium (U) contamination of Indian groundwaters is of serious concern; yet little is known of the dominant forms and release mechanisms of U in these aquifers. Interestingly, manganese (Mn)-rich aquifers, highly buffered by dissolved inorganic carbon (DIC) and saturated with rhodochrosite [MnCO], have shown low U ( View Article and Find Full Text PDF

Optimization of CZTSe Thin Films Using Sequential Annealing in Selenium and Tin-Selenium Environments.

Inorg Chem

December 2024

Laboratory of Complex Heterostructures and Multifunctional Materials, National Institute of Materials Physics, Atomistilor 405A, Magurele 077125, Romania.

CuZnSnSe (CZTSe) is a promising material for thin-film solar cells due to its suitable band gap, high absorption coefficient, and composition of earth-abundant and nontoxic elements. In this study, we prepared CZTSe thin films from Cu/SnSe and ZnSe stacks using a two-step annealing process. Initially, Cu-Sn-Se (CTSe) films were synthesized by sequential deposition and annealing of Cu and SnSe precursors in either a selenium (Se) or tin-selenium (Sn+Se) atmosphere.

View Article and Find Full Text PDF

We present a comprehensive overview of the commissioning process and initial results of a synchrotron beamline dedicated to atomic, molecular, and optical sciences at the BL-5 undulator port of the Indus-2 synchrotron facility, Raja Ramanna Center for Advanced Technology, Indore, India. The beamline delivers a photon flux of ∼1012 photons/s with high resolving power (∼10 000) over an energy range of 6-800 eV, making it suitable for high-resolution spectroscopy in atomic, molecular, and optical science. The energy tunability from vacuum ultraviolet to soft x-ray (6-800 eV) is achieved through a varied line spacing plane grating monochromator with four gratings: very low energy (VLEG), low energy (LEG), medium energy (MEG), and high energy (HEG).

View Article and Find Full Text PDF

Gilded wall paintings such as those in Petra-Jordan undergo deterioration processes such as delamination and loss of the gold layer. The aim of this work is to produce a functioning long-lasting adhesive that compensates for binder and gold loss while stabilising the gold layer. Polymer-stabilised gold nanoparticles (AuNPs) as a conservation material for gilded heritage paintings (Nano Gold Gel (NGG)) were synthesised using two facile and affordable synthesis approaches.

View Article and Find Full Text PDF

Purpose: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease that severely impairs patient's life quality and represents significant therapeutic challenge due to its pathophysiology arising from skin barrier dysfunction. Topical corticosteroids, the mainstay treatment for mild to moderate AD, are usually formulated into conventional dosage forms that are impeded by low drug permeation, resulting in high doses with consequent adverse effects, and also lack properties that would strengthen the skin barrier. Herein, we aimed to develop biomimetic lamellar lyotropic liquid crystals (LLCs), offering a novel alternative to conventional AD treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!