Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A remote-operated apparatus for testing the detonation sensitivity of energetic materials is detailed. Using an air ram and rotating disk, the normal force and transverse velocity of the impact plane are controlled independently, enabling the exploration of varying impact conditions over a wide parameter space. A microcontroller local to the apparatus is used to automate apparatus operation and ensure temporal alignment of the impacting ram head with the rotating disk. Calculation of the firing parameters and issuing of operational commands are handled by a remote computer and relayed to the local microcontroller for execution at the hardware level. Impact forces are taken from fast strain measurements obtained from gauges incorporated into the ram head. Infrared imaging of explosive samples provides insight into the peak thermal temperatures experienced at the sample surface during the impact event.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0043825 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!