Having a sub-ns response time and not requiring physical contacts to the measurement points, a voltage measurement system based on the Pockels electro-optic effect, referred to as a PE (Pockels effect)-based voltmeter, is widely used for pulsed high voltage devices such as accelerators and X-pinch systems. To correct for the misalignment of a Pockels cell and the transmittance ratio of a beam splitter, a polar-coordinate-based data analysis scheme has been proposed. This scheme also overcomes a limitation on the measurable range of a PE-based voltmeter without ambiguity and can measure the half-wave voltage of a Pockels cell. We present an improved polar-coordinate-based data analysis scheme using an ellipse fitting method, which can correct for misalignments of all the optics components of a PE-based voltmeter while keeping the advantages of the previous scheme. We show the results of the improved data analysis scheme for measuring a slowly modulated voltage up to approximately 5 kV in about 30 s and a pulsed high voltage up to 7 kV with a rise time of less than 20 ns.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0040467DOI Listing

Publication Analysis

Top Keywords

data analysis
16
analysis scheme
16
misalignments optics
8
voltage measurement
8
measurement system
8
system based
8
based pockels
8
pockels electro-optic
8
pulsed high
8
high voltage
8

Similar Publications

Objective: This meta-analysis evaluates the comparative efficacy of lateral unicompartmental arthroplasty (UKA) versus medial UKA in treating unicompartmental knee osteoarthritis (KOA).

Methods: We systematically searched Cochrane, PubMed, Embase, and Web of Science databases from January 2000 to September 2024. Literature screening, quality assessment, and data extraction were conducted based on predefined inclusion and exclusion criteria.

View Article and Find Full Text PDF

Background: The pressure gradient between the ventricles and the subarachnoid space (transmantle pressure) is crucial for understanding CSF circulation and the pathogenesis of certain neurodegenerative diseases. This pressure can be approximated by the pressure difference across the aqueduct (ΔP). Currently, no dedicated platform exists for quantifying ΔP, and no research has been conducted on the impact of breathing on ΔP.

View Article and Find Full Text PDF

Background: There is still a significant proportion of patients with rheumatoid arthritis (RA) in whom multiple therapeutic lines are ineffective. These cases are defined by the EULAR criteria as Difficult-to-Treat RA (D2T-RA) for which there is limited knowledge of predisposing factors.

Objective: To identify the clinical features associated with D2T-RA in real-life practice.

View Article and Find Full Text PDF

Alzheimer's disease and antibody-mediated immune responses to infectious diseases agents: a mendelian randomization study.

Hereditas

January 2025

The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 182 Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, China.

Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, with antibody-mediated immune responses to infectious diseases agents potentially playing a decisive role in its pathophysiological process. However, the causal relationship between antibodies and AD remains unclear.

Methods: A two-sample Mendelian randomization (MR) analysis was conducted to investigate the causal link between antibody-mediated immune responses to infectious diseases agents and the risk of AD.

View Article and Find Full Text PDF

Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!