A dielectric AC magnetic sensor in layered ferrites/piezoelectric composites was fabricated and developed, whereby its high magnetodielectric (MDE) effects, the typical magnetic-sensing parameters, were systematically characterized at zero bias. Polycrystalline ferrites were synthesized by the solid-state sintering technique with a composition of NiZnTbFeO, and the desired spinel structure and soft magnetic properties were confirmed by x-ray diffraction and VSM, respectively. The field-induced charge order insulating state in piezoelectric ceramics accounts for the suppressed permittivity, which enables the possibility of a highly sensitive magnetic sensor at zero bias field. Experimental results exhibit that a small variation in H as low as 100 mOe can be clearly distinguished with a favorable nonlinearity of 2.24%. Meanwhile, the output stability of the presented sensor under 2h of constant and continuous excitation was tested within a favorable fluctuating tolerance range of 6.14-6.28 nF, and the estimated uncertainty of ∼0.063 038 nF was verified by statistical analysis. The presented ferrite/piezoelectric magnetic sensors exhibiting a high MDE response without the requirement for an external magnetic bias are of importance for use in bio-magnetic field detection due to metrics of miniaturization, high sensitivity, and favorable stabilities.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0035059DOI Listing

Publication Analysis

Top Keywords

magnetic sensors
8
bias field
8
magnetic sensor
8
magnetic
5
high-resolution magnetic
4
sensors ferrite/piezoelectric
4
ferrite/piezoelectric heterostructure
4
heterostructure giant
4
giant magnetodielectric
4
bias
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!