Cell-phone camera Raman spectrometer.

Rev Sci Instrum

Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA.

Published: May 2021

In this report, we describe the design, construction, and operation of a cell-phone-based Raman and emission spectral detector, which when coupled to a diffraction grating and cell-phone camera system provides means for the detection, recording, and identification of chemicals, drugs, and biological molecules, in situ by means of their Raman and fluorescence spectra. The newly constructed cell-phone spectrometer system was used to record Raman spectra from various chemicals and biological molecules including the resonance enhanced Raman spectra of carrots and bacteria. In addition, we present the quantitative analysis of alcohol-water Raman spectra, performed using our cell-phone spectrometer. The designed and constructed system was also used for constructing Raman images of the samples by utilizing a position scanning stage in conjunction with the system. This compact and portable system is well suited for in situ field applications of Raman and fluorescence spectroscopy and may also be an integrated feature of future cell-phones.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0046281DOI Listing

Publication Analysis

Top Keywords

raman spectra
12
cell-phone camera
8
raman
8
biological molecules
8
raman fluorescence
8
cell-phone spectrometer
8
system
5
cell-phone
4
camera raman
4
raman spectrometer
4

Similar Publications

In this study, we investigated the cytotoxic effect of highly soluble dextran-coated CeO nanoparticles on human fetal lung fibroblasts MRC-5. We examined individual nanoparticle-treated cells by Raman spectroscopy and analyzed Raman spectra using non-negative principal component analysis and k-means clustering. In this way, we determined dose-dependent differences between treated cells, which were reflected through the intensity change of lipid, phospholipid and RNA-related Raman modes.

View Article and Find Full Text PDF

A combination of femtosecond stimulated Raman scattering and surface-enhanced Raman scattering, termed surface-enhanced stimulated Raman scattering (SE-FSRS), was proposed to leverage both temporal precision and sensitivity for advanced molecular dynamics analysis. During the initial successful implementations of this approach, unexpected spectral distortions were observed, and several potential explanations were proposed. Further progress in this novel technique and its broader implementation requires a profound understanding of the factors influencing the shape of the registered spectra and the underlying mechanisms.

View Article and Find Full Text PDF

Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μ-OSubPc.

View Article and Find Full Text PDF

Within the context of polypropylene recycling by dissolution, the potential degradation of polypropylene in solution has been investigated using in situ NIR and Raman spectroscopy. Pure polypropylene, completely free of additives, and commercial polypropylene, low in additives, are degraded on purpose under different conditions. Genetic algorithm combined with partial least squares (GA-PLS) models have been built based on near-infrared (NIR) spectra, and partial least squares (PLS) models based on Raman spectra, to predict the mass average molar mass and the chain-scission rate, respectively, during the degradation process.

View Article and Find Full Text PDF

Detecting the saddling deformations in nickel meso-phenyl substituted porphyrins using low-frequency Raman characteristic peaks.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China. Electronic address:

The out-of-plane (OOP) deformations of metalloporphyrins macrocycle are closely related to their biological functions, and Raman spectroscopy is a powerful tool for investigating OOP deformations. However, due to the interplay of electronic structure, substituents, porphyrin macrocycle in-plane (IP) and OOP deformations, it is challenging to measure the OOP deformations directly, or, establish a confirmative correlation between the frequency shifts of characteristic peaks and specific OOP deformation changes. In this work, we first selected the model porphyrin Ni-P and employed DFT calculations to explore the relationship between the ruffling and saddling deformation changes and their corresponding Raman spectral differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!