In this paper, an ultra-low-voltage crystal quartz oscillator is proposed. The design of the proposed oscillator is essentially based on using a HEMT operating in an unsaturated dc regime and a quartz resonator as a resonant impedance transformer. The 25 MHz prototype shows steady oscillations at the supply voltage of less than 17 mV and the power consumption as low as 300 nW, i.e., 1-2 orders of magnitude lower than the other to-date oscillators. This approach is good for building ultra-low consumption radio devices including those working at low temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0041579DOI Listing

Publication Analysis

Top Keywords

supply voltage
8
crystal quartz
8
quartz oscillator
8
ultra-low supply
4
voltage crystal
4
oscillator paper
4
paper ultra-low-voltage
4
ultra-low-voltage crystal
4
oscillator proposed
4
proposed design
4

Similar Publications

Hydrogen evolution reaction (HER), as one of the most advanced methods for the green production of hydrogen, is greatly impeded by inefficient mass transfer. Here we present an efficiently reactant enriched and mass traffic system by integrating high-curvature Pt nanocones with 3D porous TiAl framework to enhance mass transfer rate. Theoretical simulations, in situ Raman spectroscopy and potential-dependent Fourier transform infrared spectroscopy results disclose that the strong local electric field induced by high-curvature Pt can greatly promote the HO supply rate during HER, resulting in ∼1.

View Article and Find Full Text PDF

Microfluidic fractionation of microplastics, bacteria and microalgae with induced-charge electro-osmotic eddies.

Anal Chim Acta

February 2025

School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China. Electronic address:

Background: Fractionation of microalgal cells has important applications in producing pharmaceuticals and treating diseases. Multiple types of microalgal cells generally coexist in the oceans or lakes and are easily contaminated by microplastics and bacteria. Therefore, it is of paramount significance to develop an effective fractionation approach for microalgal cells for biological applications.

View Article and Find Full Text PDF

This article presents the results of experimental studies on the influence of the geometry of high-voltage plasma actuator electrodes on the change in flow in the boundary layer and their influence on the change in the lift coefficient. The plasma actuator used in the described experimental studies has a completely different structure. The experimental model of the plasma actuator uses a large mesh ground electrode and different geometries of the high-voltage electrodes, namely copper solid electrodes and mesh electrodes (the use of mesh electrodes, large GND and HV is a new solution).

View Article and Find Full Text PDF

The paper presents a review of CNTs synthesis methods and their application as a functional filler to obtain polymer composites for various technical purposes for strain gauges, electrical heating, anti-static coatings, electrically conductive compounds, etc. Various synthesis methods allow CNTs with different morphology and structural properties to be created, which expands the possibilities of the application of such nanoscale structures. Polymers can provide such effects as 'shape memory' and self-repair of mechanical defects.

View Article and Find Full Text PDF

The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!