We have developed a denoising autoencoder based neural network (NN) method to determine a spectral line intensity with an uncertainty lower than the uncertainty determined by fitting the spectral line. The NN method processes the measured raw spectral line shape, providing a single Gaussian shape based on the training dataset, which consists of synthetically prepared Doppler shift and broadening free spectral lines in the present work. It is found that the uncertainty reduction level significantly depends on the training dataset. Limitations originating from the training dataset are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0039781DOI Listing

Publication Analysis

Top Keywords

training dataset
12
single gaussian
8
gaussian shape
8
spectral
5
prediction single
4
shape spectral
4
spectral measured
4
measured low-dispersion
4
low-dispersion spectrometer
4
spectrometer machine
4

Similar Publications

Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.

View Article and Find Full Text PDF

Assessment of using transfer learning with different classifiers in hypodontia diagnosis.

BMC Oral Health

January 2025

Pediatric Dentistry Department, Faculty of Dentistry, Başkent University, 06490, Ankara, Turkey.

Background: Hypodontia is the absence of one or more teeth in the primary or permanent dentition during development, and radiographic imaging is the most common method of diagnosis. However, in recent years, artificial intelligence-based decision support systems have been employed to make highly accurate diagnoses. The aim of this study was to classify single premolar agenesis, multiple premolar agenesis, and without tooth agenesis using various artificial intelligence approaches.

View Article and Find Full Text PDF

Belt conveyor idler fault detection algorithm based on improved YOLOv5.

Sci Rep

January 2025

School of Intelligent Manufacturing and Modern Industry (School of Mechanical Engineering), Xinjiang University, Ürümqi, 830017, China.

The rapid expansion of the coal mining industry has introduced significant safety risks, particularly within the harsh environments of open-pit coal mines. The safe and stable operation of belt conveyor idlers is crucial not only for ensuring efficient coal production but also for safeguarding the lives of coal mine workers. Therefore, this paper proposes a method based on deep learning for real-time detection of conveyor idler faults.

View Article and Find Full Text PDF

Improved YOLOv8n based helmet wearing inspection method.

Sci Rep

January 2025

School of Computer and Communication Engineering, Dalian Jiaotong University, Dalian, 116028, China.

This paper proposes the YOLOv8n_H method to address issues regarding parameter redundancy, slow inference speed, and suboptimal detection precision in contemporary helmet-wearing target recognition algorithms. The YOLOv8 C2f module is enhanced with a new SC_Bottleneck structure, incorporating the SCConv module, now termed SC_C2f, to mitigate model complexity and computational costs. Additionally, the original Detect structure is substituted with the PC-Head decoupling head, leading to a significant reduction in parameter count and an enhancement in model efficiency.

View Article and Find Full Text PDF

Multi-environment field trials for wheat yield, stability and breeding progress in Germany.

Sci Data

January 2025

Section of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.

Multi-environmental trials (MET) with temporal and spatial variance are crucial for understanding genotype-environment-management (GxExM) interactions in crops. Here, we present a MET dataset for winter wheat in Germany. The dataset encompasses MET spanning six years (2015-2020), six locations and nine crop management scenarios (consisting of combinations for three treatments, unbalanced in each location and year) comparing 228 cultivars released between 1963 and 2016, amounting to a total of 526,751 data points covering 24 traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!