A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic fetal biometry prediction using a novel deep convolutional network architecture. | LitMetric

Automatic fetal biometry prediction using a novel deep convolutional network architecture.

Phys Med

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland; Geneva University Neurocenter, Geneva University, CH-1205 Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.

Published: August 2021

Purpose: Fetal biometric measurements face a number of challenges, including the presence of speckle, limited soft-tissue contrast and difficulties in the presence of low amniotic fluid. This work proposes a convolutional neural network for automatic segmentation and measurement of fetal biometric parameters, including biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL) from ultrasound images that relies on the attention gates incorporated into the multi-feature pyramid Unet (MFP-Unet) network.

Methods: The proposed approach, referred to as Attention MFP-Unet, learns to extract/detect salient regions automatically to be treated as the object of interest via the attention gates. After determining the type of anatomical structure in the image using a convolutional neural network, Niblack's thresholding technique was applied as pre-processing algorithm for head and abdomen identification, whereas a novel algorithm was used for femur extraction. A publicly-available dataset (HC18 grand-challenge) and clinical data of 1334 subjects were utilized for training and evaluation of the Attention MFP-Unet algorithm.

Results: Dice similarity coefficient (DSC), hausdorff distance (HD), percentage of good contours, the conformity coefficient, and average perpendicular distance (APD) were employed for quantitative evaluation of fetal anatomy segmentation. In addition, correlation analysis, good contours, and conformity were employed to evaluate the accuracy of the biometry predictions. Attention MFP-Unet achieved 0.98, 1.14 mm, 100%, 0.95, and 0.2 mm for DSC, HD, good contours, conformity, and APD, respectively.

Conclusions: Quantitative evaluation demonstrated the superior performance of the Attention MFP-Unet compared to state-of-the-art approaches commonly employed for automatic measurement of fetal biometric parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2021.06.020DOI Listing

Publication Analysis

Top Keywords

attention mfp-unet
16
fetal biometric
12
good contours
12
contours conformity
12
convolutional neural
8
neural network
8
measurement fetal
8
biometric parameters
8
attention gates
8
quantitative evaluation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!