Study of Carnosine's effect on nude mice skin to prevent UV-A damage.

Free Radic Biol Med

Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy. Electronic address:

Published: September 2021

The skin is an important barrier against external attacks from bacteria, radicals, or radiations. UV-A radiations cause significant impairment of this barrier, inducing inflammation, oxidative stress, and wrinkle formation, thereby promoting photoaging. Previous studies reported that carnosine, a potent antioxidant, and carbonyl scavenger agent, may prevent photoaging features in the skin of hairless mice exposed to UV-A radiations. In the present study, we used a quantitative proteomic approach to analyze the changes evoked by carnosine in the skin proteome of hairless mice exposed to UV-A. This approach allowed to quantify more than 2480 proteins, among them consistent differences were observed for 89 proteins in UV-A exposed vs control unexposed skins, and 252 proteins in UV-A-exposed skin preventively treated by carnosine (UVAC) vs UV-A. Several functional pathways were altered in the skins of UV-A exposed hairless mice, including the integrin-linked kinase, calcium signaling, fibrogenesis, cell migration and filament formation. An impairment of mitochondrial function and metabolism was observed, with an up-regulation of cytochrome C oxidase 6B1 and NADH: ubiquinone oxidoreductase S8. Skins pre-treated by carnosine were prevented from UV-A induced proteome alterations. In conclusion, our study emphasizes the potency of a proteomic approach to identify the consequences of UV radiations in the skins, and points out the capacity of carnosine to prevent the alterations of skin proteome evoked by UV-A.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2021.07.010DOI Listing

Publication Analysis

Top Keywords

hairless mice
12
uv-a
9
uv-a radiations
8
mice exposed
8
exposed uv-a
8
proteomic approach
8
skin proteome
8
uv-a exposed
8
skin
6
carnosine
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!