AI Article Synopsis

  • Chronic disruption of rhythms (CDR) affects sleep and can lead to health issues due to circadian misalignment, often worsened by stress.
  • Prebiotic nutrients can improve gut health, reduce stress-related sleep disturbances, and help maintain natural rhythms.
  • Research on rats indicated that a prebiotic diet not only altered gut microbiota positively but also showed potential in mitigating sleep and physiological problems caused by CDR.

Article Abstract

Chronic disruption of rhythms (CDR) impacts sleep and can result in circadian misalignment of physiological systems which, in turn, is associated with increased disease risk. Exposure to repeated or severe stressors also disturbs sleep and diurnal rhythms. Prebiotic nutrients produce favorable changes in gut microbial ecology, the gut metabolome, and reduce several negative impacts of acute severe stressor exposure, including disturbed sleep, core body temperature rhythmicity, and gut microbial dysbiosis. In light of previous compelling evidence that prebiotic diet broadly reduces negative impacts of acute, severe stressors, we hypothesize that prebiotic diet will also effectively mitigate the negative impacts of chronic disruption of circadian rhythms on physiology and sleep/wake behavior. Male, Sprague Dawley rats were fed diets enriched in prebiotic substrates or calorically matched control chow. After 5 weeks on diet, rats were exposed to CDR (12 h light/dark reversal, weekly for 8 weeks) or remained on undisturbed normal light/dark cycles (NLD). Sleep EEG, core body temperature, and locomotor activity were recorded via biotelemetry in freely moving rats. Fecal samples were collected on experimental days -33, 0 (day of onset of CDR), and 42. Taxonomic identification and relative abundances of gut microbes were measured in fecal samples using 16S rRNA gene sequencing and shotgun metagenomics. Fecal primary, bacterially modified secondary, and conjugated bile acids were measured using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Prebiotic diet produced rapid and stable increases in the relative abundances of Parabacteroides distasonis and Ruminiclostridium 5. Shotgun metagenomics analyses confirmed reliable increases in relative abundances of Parabacteroides distasonis and Clostridium leptum, a member of the Ruminiclostridium genus. Prebiotic diet also modified fecal bile acid profiles; and based on correlational and step-wise regression analyses, Parabacteroides distasonis and Ruminiclostridium 5 were positively associated with each other and negatively associated with secondary and conjugated bile acids. Prebiotic diet, but not CDR, impacted beta diversity. Measures of alpha diversity evenness were decreased by CDR and prebiotic diet prevented that effect. Rats exposed to CDR while eating prebiotic, compared to control diet, more quickly realigned NREM sleep and core body temperature (ClockLab) diurnal rhythms to the altered light/dark cycle. Finally, both cholic acid and Ruminiclostridium 5 prior to CDR were associated with time to realign CBT rhythms to the new light/dark cycle after CDR; whereas both Ruminiclostridium 5 and taurocholic acid prior to CDR were associated with NREM sleep recovery after CDR. These results support our hypothesis and suggest that ingestion of prebiotic substrates is an effective strategy to increase the relative abundance of health promoting microbes, alter the fecal bile acid profile, and facilitate the recovery and realignment of sleep and diurnal rhythms after circadian disruption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2021.07.006DOI Listing

Publication Analysis

Top Keywords

prebiotic diet
28
parabacteroides distasonis
16
bile acid
12
chronic disruption
12
diurnal rhythms
12
negative impacts
12
core body
12
body temperature
12
relative abundances
12
prebiotic
11

Similar Publications

Introduction Emerging evidence suggests an association between obesity and Functional Gastrointestinal Disorders (FGIDs). Childhood obesity and FGIDs share many common features, such as high prevalence in the pediatric population, risk factors related to diet and lifestyle, gut microbiota impairments, and psychological distress. This narrative review aims to summarize the main evidence regarding FGIDs in childhood obesity, with a specific focus on the role of diet and its impact on the microbiota.

View Article and Find Full Text PDF

Metabolic alterations, including hypermetabolism, lipid imbalances, and glucose dysregulation, are pivotal contributors to the onset and progression of Amyotrophic Lateral Sclerosis (ALS). These changes exacerbate systemic energy deficits, heighten oxidative stress, and fuel neuroinflammation. Simultaneously, gastrointestinal dysfunction and gut microbiota (GM) dysbiosis intensify disease pathology by driving immune dysregulation, compromising the intestinal barrier, and altering gut-brain axis (GBA) signaling, and lastly advancing neurodegeneration.

View Article and Find Full Text PDF

The increasing global population and the environmental consequences of meat consumption have led to the exploration of alternative sources of protein. Edible insects have gained attention as a sustainable and nutritionally rich meat alternative. We investigated the effects of two commonly consumed insects, larva and pupa, on beneficial gut microbiota growth, using whole 16s metagenome sequencing to assess diet-associated changes.

View Article and Find Full Text PDF

High-fat diet (HFD) consumption disrupts the gut microbiome, instigating metabolic disturbance, brain pathology, and cognitive decline via the gut-brain axis. Probiotic and prebiotic supplementation have been found to improve gut microbiome health, suggesting they could be effective in managing neurodegenerative disorders. This study explored the potential benefits of the probiotic strain Lactobacillus plantarum 20174 (L.

View Article and Find Full Text PDF

Gut microbiota in post-acute COVID-19 syndrome: not the end of the story.

Front Microbiol

December 2024

Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, National Key Clinical Specialty, General Hospital, Tianjin Medical University, Tianjin, China.

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has led to major global health concern. However, the focus on immediate effects was assumed as the tip of iceberg due to the symptoms following acute infection, which was defined as post-acute COVID-19 syndrome (PACS). Gut microbiota alterations even after disease resolution and the gastrointestinal symptoms are the key features of PACS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!