Recently, we reported that the atypical antidepressant agomelatine (Ago) exerted a beneficial impact on behavioral changes and concomitant neuropathological events in icvSTZ rat model of sporadic Alzheimer diseases (AD). In the present study, we aimed to explore the effect of Ago (40 mg/kg, i.p. for 30 days) on beta-amyloid (Aβ) metabolism in icvAβ rat model of AD. The melatonin analogue was administered either simultaneously with Aβ (AβAgo1) or 30 days later during the late stage of the progression of AD (AβAgo2). Treatment with Ago in the early stage of AD attenuated anxiety and depressive-like responses but was inefficient against Aβ-induced impairment of hippocampus-dependent spatial memory. The melatonin analogue, administered both during the early and the late stage of AD, corrected to control level the elevated Aβ in the frontal cortex (FC) and the hippocampus. The concentration of α-secretase was enhanced by AβAgo1 compared to the sham- and Aβ-veh groups in the hippocampus. No changes in the concentration of β-secretase in the FC and the hippocampus as well as of γ-secretase in the FC were observed among groups. Both the AβAgo1 and AβAgo2 attenuated to control level the Aβ-induced increased concentration of γ-secretase in the hippocampus. AβAgo1 exerted also structure-specific neuroprotection observed mainly in the CA1, septal CA3b subfield of the dorsal hippocampus and septo-temporal piriform cortex (Pir) and partially in the temporal CA3c, septal and temporal Pir. These findings suggest that Ago treatment in the early stage of AD can exert beneficial effects on concomitant behavioral impairments and neuroprotection in associated brain structures. The antidepressant administration both in the early stage and after the progression of AD affected Aβ metabolism via decreasing of γ-secretase concentration in the hippocampus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2021.113525 | DOI Listing |
J Biol Chem
February 2023
Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA. Electronic address:
The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier.
View Article and Find Full Text PDFCell Rep
June 2019
Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK. Electronic address:
AAA+ proteins form asymmetric hexameric rings that hydrolyze ATP and thread substrate proteins through a central channel via mobile substrate-binding pore loops. Understanding how ATPase and threading activities are regulated and intertwined is key to understanding the AAA+ protein mechanism. We studied the disaggregase ClpB, which contains tandem ATPase domains (AAA1, AAA2) and shifts between low and high ATPase and threading activities.
View Article and Find Full Text PDFElife
November 2018
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
The biogenesis of 60S ribosomal subunits is initiated in the nucleus where rRNAs and proteins form pre-60S particles. These pre-60S particles mature by transiently interacting with various assembly factors. The ~5000 amino-acid AAA+ ATPase Rea1 (or Midasin) generates force to mechanically remove assembly factors from pre-60S particles, which promotes their export to the cytosol.
View Article and Find Full Text PDFJ Biol Chem
December 2018
From the Department of Biology, Faculty of Science and Engineering and
ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA), ClpB forms a hexameric ring structure, with each protomer containing two AAA modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring.
View Article and Find Full Text PDFStructure
December 2018
Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA. Electronic address:
Cytoplasmic dynein, whose motor domain belongs to the AAA+ family, walks on microtubules toward the minus end. Using the available structures in different nucleotide states, we performed simulations of a coarse-grained model to elucidate the dynamics of allosteric transitions. Binding of ATP closes the cleft between the AAA1 and AAA2 domains, triggering conformational changes in the rest of the motor domain, thus forming the pre-power stroke state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!