In ribosomopathies, perturbed expression of ribosome components leads to tissue-specific phenotypes. What accounts for such tissue-selective manifestations as a result of mutations in the ribosome, a ubiquitous cellular machine, has remained a mystery. Combining mouse genetics and in vivo ribosome profiling, we observe limb-patterning phenotypes in ribosomal protein (RP) haploinsufficient embryos, and we uncover selective translational changes of transcripts that controlling limb development. Surprisingly, both loss of p53, which is activated by RP haploinsufficiency, and augmented protein synthesis rescue these phenotypes. These findings are explained by the finding that p53 functions as a master regulator of protein synthesis, at least in part, through transcriptional activation of 4E-BP1. 4E-BP1, a key translational regulator, in turn, facilitates selective changes in the translatome downstream of p53, and this thereby explains how RP haploinsufficiency may elicit specificity to gene expression. These results provide an integrative model to help understand how in vivo tissue-specific phenotypes emerge in ribosomopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319123PMC
http://dx.doi.org/10.1016/j.devcel.2021.06.013DOI Listing

Publication Analysis

Top Keywords

tissue-specific phenotypes
8
protein synthesis
8
phenotypes
5
p53-dependent translational
4
translational program
4
program directs
4
directs tissue-selective
4
tissue-selective phenotypes
4
phenotypes model
4
model ribosomopathies
4

Similar Publications

The GhANT-GoPGF module regulates pigment gland development in cotton leaves.

Cell Rep

December 2024

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng, Henan 475004, P.R. China. Electronic address:

Gossypium spp. pigment glands are a good model for studying plant secretory cavity structures. GoPGF (GOSSYPIUM PIGMENT GLAND FORMATION) is a well-characterized master transcription factor that controls gland formation in cotton; however, little is known about its transcriptional regulation.

View Article and Find Full Text PDF

Background: Diabetic retinopathy (DR) is the most important complication of Type 2 Diabetes (T2D) in eyes. Despite its prevalence, the early detection and management of DR continue to pose considerable challenges. Our research aims to elucidate potent drug targets that could facilitate the identification of DR and propel advancements in its therapeutic strategies.

View Article and Find Full Text PDF

Background: Understanding genetic underpinnings of immune-mediated inflammatory diseases is crucial to improve treatments. Single-cell RNA sequencing (scRNA-seq) identifies cell states expanded in disease, but often overlooks genetic causality due to cost and small genotyping cohorts. Conversely, large genome-wide association studies (GWAS) are commonly accessible.

View Article and Find Full Text PDF

Investigating the common genetic architecture and causality of metabolic disorders with neurodegenerative diseases.

Diabetes Obes Metab

December 2024

Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.

Background: The co-occurrence of metabolic dysfunction and neurodegenerative diseases suggests a genetic link, yet the shared genetic architecture and causality remain unclear. We aimed to comprehensively characterise these genetic relationships.

Methods: We investigated genetic correlations among four neurodegenerative diseases and seven metabolic dysfunctions, followed by bidirectional Mendelian randomisation (MR) to assess potential causal relationships.

View Article and Find Full Text PDF

, a desert shrub known for its impressive drought tolerance, exhibits notable resilience under arid conditions. However, the underlying mechanisms driving its drought resistance remain largely unexplored. This study aims to investigate these mechanisms by exposing to osmotic stress using varying polyethylene glycol (PEG) concentrations (1%, 5%, 10%) in a controlled laboratory setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!