The efficient and low-cost way for gene mutation detection and identification are conducive for the detection of disease. Here, we report the electronic characteristics of the gene of breast cancer 1 in four common mutation types: duplication, single nucleotide variant, deletion, and indel. The electronic characteristics are investigated by the combination of density functional theory and non-equilibrium Green's function formulation with decoherence. The magnitude of conductance of these DNA molecules and mutational changes are found to be detectable experimentally. In this study, we also find the significant mutation type dependent on the change of conductance. Hence these mutations are expected to be identifiable. We find deletion type mutation shows the largest change in relative conductance (~97%), whereas the indel mutation shows the smallest change in relative conductance (~27%). Therefore, this work presents a possibility of electronic detection and identification of mutations in DNA, which could be an efficient method as compared to the conventional methods.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.23465DOI Listing

Publication Analysis

Top Keywords

electronic characteristics
12
mutations dna
8
dna efficient
8
detection identification
8
change relative
8
relative conductance
8
mutation
5
electronic
4
characteristics brca1
4
brca1 mutations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!