Surface-enhanced Raman Scattering (SERS) is a sensitive and nondestructive technique that provides fingerprint structural information of molecules. Designing and constructing sensitive and stable SERS substrates is of great significance for the application of the technique. In this study, single-layer carbon-based dots (CDs) are used as capping agents to synthesize gold nanoparticles (AuNPs/CDs) and manganese dioxide nanosheets (MnO/CDs), which are then hybridized through a simple cocentrifugation method. After the hybridization, the monodispersive AuNPs/CDs aggregate obviously into some clusters exhibiting strong SERS activity due to the electromagnetic "hot spots" effect, and the MnO/CDs also show outstanding SERS activity due to the charge-transfer resonance effect. The obtained nanohybrids (MnO/CDs/AuNPs) with robust chemical stability combine well with the electromagnetic enhancement of AuNPs/CDs and chemical enhancement of MnO/CDs, leading to an ultrahigh enhancement factor of 3.9 × 10. Based on the novel SERS substrate, a sensitive and rapid sensing system for the detection of malachite green is developed, with a low detection limit of 1 × 10 M. This work provides a valuable model for designing and fabricating high-performance SERS substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c01181 | DOI Listing |
Molecules
December 2024
Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
Manganese dioxide (MnO) shows great potential in the field of electrochemical performance. But its poor conductivity, easy dissolution in electrolytes and undesirable ionic accessibility hinder its application. The construction of mesoporous polypyrrole/manganese dioxide (PPy/MnO) composites can effectively alleviate these problems.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:
J Hazard Mater
January 2025
Institute of Environmental Science, Shanxi University, Wucheng No. 92, rd, Taiyuan, Shanxi, PR China. Electronic address:
Hydroquinone (HQ) is a prevalent pollutant in aquatic environments, posing significant risks to ecosystems and human health. Practical methods for the simultaneous detection and degradation of HQ are essential. To address this requirement, a dual-mode detection and degradation strategy has been developed utilizing designed nanozymes (DM) consisting of a porous SiO core and MnO shell.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
Int J Biol Macromol
December 2024
Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!