Foodborne pathogens have caused many public health incidents and heavy economic burden. Endolysins have been proven to have efficient bactericidal activity against pathogens with low incidence of resistance. In this study, the recombinant endolysin LysSP1 encoded by Salmonella Typhimurium lytic bacteriophage SLMP1 was obtained by prokaryotic expression, and its characteristics were analyzed. Ethylenediaminetetraacetic acid (EDTA) can be used as the outer membrane permeabilizer to increase the bactericidal activity of LysSP1. Under the synergism of 5 mmol/L EDTA, LysSP1 exhibited a strong bactericidal activity against Salmonella Typhimurium ATCC14028. LysSP1 was stable at 4°C for 7 days and at -20°C for 180 days. LysSP1 remained the optimal activity at 40°C and was efficiently active at alkaline condition (pH 8.0-10.0). Divalent metal ions could not enhance the bactericidal activity of LysSP1 and even caused the significant reduction of bactericidal activity. LysSP1 not only could lyse Salmonella, but also could lyse other Gram-negative strains and Gram-positive strains. These results indicated that LysSP1 is a broad-spectrum endolysin and has potential as an antimicrobial agent against Salmonella and other foodborne pathogens. KEY POINTS: • Recombinant endolysin LysSP1 can be prepared by prokaryotic expression. • LysSP1 has stable nature and strong bactericidal activity on Salmonella Typhimurium with EDTA. • LysSP1 has a broad range of hosts including Gram-negative bacteria and Gram-positive bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-021-11366-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!