Entanglement underpins a variety of quantum-enhanced communication, sensing, and computing capabilities. Entanglement-assisted communication (EACOMM) leverages entanglement preshared by communicating parties to boost the rate of classical information transmission. Pioneering theory works showed that EACOMM can enable a communication rate well beyond the ultimate classical capacity of optical communications, but an experimental demonstration of any EACOMM advantage remains elusive. In this Letter we report the implementation of EACOMM surpassing the classical capacity over lossy and noisy bosonic channels. We construct a high-efficiency entanglement source and a phase-conjugate quantum receiver to reap the benefit of preshared entanglement, despite entanglement being broken by channel loss and noise. We show that EACOMM beats the Holevo-Schumacher-Westmoreland capacity of classical communication by up to 16.3%, when both protocols are subject to the same power constraint at the transmitter. As a practical performance benchmark, we implement a classical communication protocol with the identical characteristics for the encoded signal, showing that EACOMM can reduce the bit-error rate by up to 69% over the same bosonic channel. Our work opens a route to provable quantum advantages in a wide range of quantum information processing tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.126.250501 | DOI Listing |
Adv Clin Exp Med
January 2025
Institute of Cardiology, Jagiellonian University Medical College, Cracow, Poland.
Background: We still know little about the effective pharmacological treatment of heart failure (HF) associated with the Fontan circulation. One of the new options may be sodium glucose cotransporter-2 inhibitors (SGLT2i), which have been proven effective in classic forms of left ventricular HF.
Objectives: To evaluate the effect and safety of SGLT2i inclusion in adults with Fontan circulation.
Int J Mol Sci
December 2024
Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
Viral vector delivery of gene therapy represents a promising approach for the treatment of numerous retinal diseases. Adeno-associated viral vectors (AAV) constitute the primary gene delivery platform; however, their limited cargo capacity restricts the delivery of several clinically relevant retinal genes. In this study, we explore the feasibility of employing high-capacity adenoviral vectors (HC-AdVs) as alternative delivery vehicles, which, with a capacity of up to 36 kb, can potentially accommodate all known retinal gene coding sequences.
View Article and Find Full Text PDFCortex
December 2024
Departments of Neurology and Nuclear Medicine, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Spain. Electronic address:
Background: This study aimed to evaluate the capacity of neuropsychological assessment to predict the regional brain metabolism in a cohort of patients with amnestic Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) using Machine Learning algorithms.
Methods: We included 360 subjects, consisting of 186 patients with AD, 87 with bvFTD, and 87 cognitively healthy controls. All participants underwent a neuropsychological assessment using the Addenbrooke's Cognitive Examination and the Neuronorma battery, in addition to [F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging.
Sci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
This paper proposes an advanced Load Frequency Control (LFC) strategy for two-area hydro-wind power systems, using a hybrid Long Short-Term Memory (LSTM) neural network combined with a Genetic Algorithm-optimized PID (GA-PID) controller. Traditional PID controllers, while extensively used, often face limitations in handling the nonlinearities and uncertainties inherent in interconnected power systems, leading to slower settling time and higher overshoot during load disturbances. The LSTM + GA-PID controller mitigates these issues by utilizing LSTM's capacity to learn from historical data by using gradient descent to forecast the future disturbances, while the GA optimizes the PID parameters in real time, ensuring dynamic adaptability and improved control precision.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Science, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan.
Two 3D/2D anionic metal-organic frameworks (MOFs), [Cu(HL)] () and [Mn(L)(DMF)] ( (DMF = ,-dimethylformamide), were synthesized by the solvothermal reaction of metal salts and 5'-(4-carboxyphenyl)-2',4',6'-triethyl-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid (HL). Single-crystal X-ray diffraction analyses revealed that complex shows three-dimensional (3D) frameworks with a (3,6)-connected 3-fold interpenetrated topology with the Schläfli symbols of {4.6}{4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!