The technique of phase contrast imaging, combined with tomographic reconstructions, can rapidly measure ultrasonic fields propagating in water, including ultrasonic fields with complex wavefront shapes, which are difficult to characterize with standard hydrophone measurements. Furthermore, the technique can measure the absolute pressure amplitudes of ultrasonic fields without requiring a pressure calibration. Absolute pressure measurements have been previously demonstrated using optical imaging methods for ultrasonic frequencies below 2.5 MHz. The present work demonstrates that phase contrast imaging can accurately measure ultrasonic fields with frequencies up to 20 MHz and pressure amplitudes near 10 kPa. Accurate measurements at high ultrasonic frequencies are performed by tailoring the measurement conditions to limit optical diffraction as guided by a simple dimensionless parameter. In some situations, differences between high frequency measurements made with the phase contrast method and a calibrated hydrophone become apparent, and the reasons for these differences are discussed. Extending optical imaging measurements to high ultrasonic frequencies could facilitate quantitative applications of ultrasound measurements in nondestructive testing and medical therapeutics and diagnostics such as photoacoustic imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889099 | PMC |
http://dx.doi.org/10.1121/10.0005431 | DOI Listing |
Adv Sci (Weinh)
January 2025
Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.
Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
Traditional drying is a highly energy-intensive process, accounting for approximately 15% of total manufacturing cost, it often resulting in reduced product quality due to low drying efficiency. Biological and chemical agents, referred to as biochemical drying improvers, are employed as pretreatments to enhance both drying characteristics and quality attributes of fruits and vegetables. This article provides a thorough examination of various biochemical drying improvers (including enzymes, microorganisms, edible film coatings, ethanol, organic acids, hyperosmotic solutions, ethyl oleate alkaline solutions, sulfites, cold plasma, carbon dioxide, ozone, inorganic alkaline agents, and inorganic salts) and their effects on improving the drying processes of fruits and vegetables.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
Introduction: The combination of magnetic and focused ultrasonic fields generates focused electric fields at depth entirely noninvasively. This noninvasive method may find particularly important applications in targeted treatments of the deep brain circuits involved in mental and neurological disorders. Due to the novelty of this method, it is nonetheless unknown which parameters modulate neural activity effectively.
View Article and Find Full Text PDFUltrasonics
December 2024
School of Mechatronic & Automation Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, China. Electronic address:
Fiber reinforced polymer composites (FRPs) are essential for various industrial fields, but wrinkles inside will greatly reduce their mechanical properties. Full-matrix capture (FMC) is a popular data structure for ultrasonic phased array imaging in composites. However, such structure may lead to data redundancy and noise interference.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
Shandong Engineering Research Center for High-efficiency Energy Storage and Hydrogen Energy Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
Biomass-derived porous carbon (PC) has emerged as a promising candidate for electrode materials in energy storage applications, effective pretreatment of the precursor is a key strategy for enhancing the electrochemical performance of PC. However, challenges remain in achieving this goal through environmentally friendly, simple, and efficient methods. In this paper, a dual-frequency ultrasonic-assisted enzymolysis strategy combined with carbonization-activation method was proposed to prepare high-performance garlic peel-derived PC (DUGPC) for supercapacitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!