Low-frequency ocean ambient noise on the Chukchi Shelf in the changing Arctic.

J Acoust Soc Am

Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02540, USA.

Published: June 2021

This article presents the study of a passive acoustic dataset recorded on the Chukchi Shelf from October 2016 to July 2017 during the Canada Basin Acoustic Propagation Experiment (CANAPE). The study focuses on the low-frequency (250-350 Hz) ambient noise (after individual transient signals are removed) and its environmental drivers. A specificity of the experimental area is the Beaufort Duct, a persistent warm layer intrusion of variable extent created by climate change, which favors long-range acoustic propagation. The Chukchi Shelf ambient noise shows traditional polar features: it is quieter and wind force influence is reduced when the sea is ice-covered. However, the study reveals two other striking features. First, if the experimental area is covered with ice, the ambient noise drops by up to 10 dB/Hz when the Beaufort Duct disappears. Further, a large part of the noise variability is driven by distant cryogenic events, hundreds of kilometers away from the acoustic receivers. This was quantified using correlations between the CANAPE acoustic data and distant ice-drift magnitude data (National Snow and Ice Data Center).

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0005135DOI Listing

Publication Analysis

Top Keywords

ambient noise
16
chukchi shelf
12
acoustic propagation
8
experimental area
8
beaufort duct
8
noise
5
acoustic
5
low-frequency ocean
4
ambient
4
ocean ambient
4

Similar Publications

Anthropogenic noise pollution has been accelerating at an alarming rate, greatly altering aquatic soundscapes. Animals use various mechanisms to avoid acoustic masking in noisy environments, including altering calling rates or the frequency (pitch) of their vocalizations or increasing the amplitude (loudness) of their vocalizations (i.e.

View Article and Find Full Text PDF

In this article, a CMOS-compatible Pirani vacuum gauge was proposed featuring enhanced sensitivity, lower detection limit, and high-temperature stability, achieved through the implementation of a surface micromachining method coupled with a temperature compensation strategy. To improve performance, a T-type device with a 1 µm gap was fabricated resulting in an average sensitivity of 1.10 V/lgPa, which was 2.

View Article and Find Full Text PDF

Introduction: Successful axillary reverse mapping (ARM) during lymph node surgery for breast cancer has the potential to reduce risk of lymphedema. Standard of care uses blue dye for ARM; however, recent imaging advances with near-infrared indocyanine green (ICG) fluorescence has demonstrated potential to improve intraoperative ARM imaging. The objective was to determine the feasibility of using ICG fluorescence through the OnLume Avata System for ARM.

View Article and Find Full Text PDF

Aims: Exposure to air pollution including diesel engine exhaust (DEE) is associated with increased risk of acute myocardial infarction (AMI). Few studies have investigated the risk of AMI according to occupational exposure to DEE. The aim of this study was to evaluate the association between occupational exposure to DEE and the risk of first-time AMI.

View Article and Find Full Text PDF

While soundscapes shape the structure and function of auditory systems over evolutionary timescales, there is limited information regarding the adaptation of wild fish populations to their natural acoustic environments. This is particularly relevant for freshwater ecosystems, which are extremely diverse and face escalating pressures from human activities and associated noise pollution. The Siamese fighting fish is one of the most important cultured species in the global ornamental fish market and is increasingly recognized as a model organism for genetics and behavioural studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!