We report that the aqueous dispersions of negatively charged submicron-sized colloidal Au particles formed non-close-packed colloidal crystals by the addition of a like-charged linear polyelectrolyte, sodium polyacrylate (NaPAA). Au particles often form irregular aggregates in dispersions because of a strong van der Waals force acting between them. To prevent aggregation, we introduced negative electric charges on particle surfaces. By the addition of NaPAA, colloidal crystals were formed on the bottom of a sample cell because of the supply of Au particles by sedimentation and 2D diffusion even under very dilute conditions. Interparticle potential calculations demonstrated that the addition of NaPAA caused depletion attraction between the particles as well as a significant reduction in the interparticle repulsion because of the electrostatic screening effect. However, the electrostatic repulsion was strong enough to prevent the direct contact of particles in the excluded region between Au particles. Large-area crystals could be obtained by tilting the sample cell. By drying the sample, the Au particles came into contact and the non-space-filling crystals changed into closest packed crystals. These closest packed crystals exhibited a significant enhancement of Raman scattering intensity because of high hot-spot density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0052339 | DOI Listing |
Langmuir
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.
View Article and Find Full Text PDFJ Histotechnol
January 2025
Mechanical Engineering, Orthopedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA.
With an increasing concentration of microplastics (MPs) in every biome, laboratories with a focus on creating histology slides from resin-embedded specimens could be partially responsible for expanding the emission of microscopic resinous particles into the environment. With current research elucidating harmful health impacts from MPs, releasing them incautiously is arguably unethical and, in the near future, plausibly illegal. The Orthopedic Bioengineering Research Laboratory (OBRL) is in Colorado, a state known not only for its natural beauty but also for its increasing number of legislative amendments aimed at reducing plastic pollution.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
Polymer cubosomes (PCs) have garnered significant interest in the field of nanomaterials and nanotechnology due to their unique properties and potential applications. However, the fabrication of PCs remains challenging. Polymerization-induced self-assembly (PISA) is recognized as an efficient method for producing a variety of polymer particles, including PCs.
View Article and Find Full Text PDFGenet Epidemiol
January 2025
Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.
Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!