Ultra-coarse-graining modeling of liquid water.

J Chem Phys

School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China.

Published: June 2021

It is a great challenge to develop ultra-coarse-grained models in simulations of biological macromolecules. In this study, the original coarse-graining strategy proposed in our previous work [M. Li and J. Z. H. Zhang, Phys. Chem. Chem. Phys. 23, 8926 (2021)] is first extended to the ultra-coarse-graining (UCG) modeling of liquid water, with the N increasing from 4-10 to 20-500. The UCG force field is parameterized by the top-down strategy and subsequently refined on important properties of liquid water by the trial-and-error scheme. The optimal cutoffs for non-bonded interactions in the N = 20/100/500 UCG simulations are, respectively, determined on energy convergence. The results show that the average density at 300 K can be accurately reproduced from the well-refined UCG models while it is largely different in describing compressibility, self-diffusion coefficient, etc. The density-temperature relationships predicted by these UCG models are in good agreement with the experiment result. Besides, two polarizable states of the UCG molecules are observed after simulated systems are equilibrated. The ion-water RDFs from the ion-involved N = 100 UCG simulation are nearly in accord with the scaled AA ones. Furthermore, the concentration of ions can influence the ratio of two polarizable states in the N = 100 simulation. Finally, it is illustrated that the proposed UCG models can accelerate liquid water simulation by 114-135 times, compared with the TIP3P force field. The proposed UCG force field is simple, generic, and transferable, potentially providing valuable information for UCG simulations of large biomolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0055453DOI Listing

Publication Analysis

Top Keywords

liquid water
16
force field
12
ucg models
12
ucg
10
modeling liquid
8
ucg force
8
ucg simulations
8
polarizable states
8
proposed ucg
8
ultra-coarse-graining modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!