Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Long-ranged van der Waals (vdW) interactions are most often treated via Lennard-Jones approaches based on the combination of two-body and dipolar approximations. While beyond-dipole interactions and many-body contributions were separately addressed, little is known about their combined effect, especially in large molecules and relevant nanoscale systems. Here, we provide a full many-body description of vdW interactions beyond the dipole approximation, efficiently applicable to large-scale systems. Dipole-quadrupole interactions consistently exhibit large magnitude up to nm-scale separations, while many-body effects lead to system-dependent screening effects, which can reduce vdW interactions by a large fraction. Combined many-body and multipolar terms emerge as an essential ingredient for the reliable description of vdW interactions in molecular and nanoscale systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0051604 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!