Microscale ZnO with controllable crystal morphology as a platform to study antibacterial action on Staphylococcus aureus.

Biointerphases

Department of Physics and Astronomy, Texas Christian University, Sid Richardson Building Room 308, 2950 West Bowie, Fort Worth, Texas 76129.

Published: June 2021

Nano- and microcrystalline ZnO is an inexpensive, easily synthesized material with a multitude of applications. Its usefulness in the present and future stems from its exceptional optoelectronic, structural, and chemical characteristics as well as a broad range of production techniques. One application comes from its ability to inhibit bacterial growth. Despite the well-documented, vigorously studied antimicrobial action of ZnO particles, the most fundamental physical and chemical mechanisms driving growth inhibition are still not well identified. Particularly, the nature of interactions between ZnO surfaces and extracellular material is not totally clear. This is important given the anisotropic lattice of ZnO leading to two characteristically different lattice terminations: polar and nonpolar, polar being electrically charged with many defect sites and nonpolar being electrically neutral while remaining relatively defect-free. In this work, we employ a hydrothermal growth protocol that allows us to produce ZnO microcrystals with dependable control of morphology and, particularly, the relative abundances of polar and nonpolar free surfaces. This functions as a platform for our investigations into surface-surface interactions behind the antibacterial action of ZnO microcrystals. In our studies, we produced ZnO crystals comparable in size or larger than Staphylococcus aureus bacteria. This was done intentionally to ensure that the ZnO particles would not internalize into the bacterial cells. Our experiments were performed in conjunction with surface photovoltage studies of ZnO crystals to characterize electronic structure and charge dynamics that might be contributing to the antibacterial properties of our samples. We report on the interactions between ZnO microcrystalline surfaces and extracellular material of Staphylococcus aureus bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1116/6.0000957DOI Listing

Publication Analysis

Top Keywords

staphylococcus aureus
12
zno
10
antibacterial action
8
action zno
8
zno particles
8
interactions zno
8
surfaces extracellular
8
extracellular material
8
polar nonpolar
8
zno microcrystals
8

Similar Publications

Herein, we present a distorted square pyramidal mercury complex, [HgII(L)Cl] (1), based on a quinoline-substituted formazan ligand LH[3-Cyano-1,5-(quinolin-8-yl)formazan], which was evaluated for its anti-bacterial activity in vitro. Complex 1 was prepared by refluxing 3-Cyano-1,5-(quinolin-8-yl)formazan ligand and mercury chloride(II) in equimolar quantity and was characterized utilizing a range of analytical methods, including single crystal X-ray diffraction (SCXRD) technique. The crystal packing in complex 1 has been elucidated using supramolecular investigations, which have shown the presence of fascinating Hg-Cl···Hg intermolecular spodium bonds of the order 3.

View Article and Find Full Text PDF

Vancomycin-resistant Staphylococcus aureus (VRSA) is a rare but serious public health concern. We describe a VRSA case in North Carolina, USA. The isolate from the case belonged to the USA600 lineage and clonal complex 45.

View Article and Find Full Text PDF

To trace evolution of Panton-Valentine leucocidin-positive clonal complex 398 methicillin-resistant Staphylococcus aureus (MRSA) in the Czech Republic, we tested 103 MRSA isolates from humans. Five (4.9%) were Panton-Valentine leucocidin-positive clonal complex 398, sequence types 1232 and 9181.

View Article and Find Full Text PDF

Ocular drug-delivery is one of the most challenging areas owing to nature of ocular tissues. Various nanoformulations have been designed and investigated for drug-delivery to achieve high drug bioavailability. The major focus of preparations available in market is to utilize nanomaterial as drug-carrier, with less focus on developing functional-nanomaterials, which is a key knowledge gap in the field.

View Article and Find Full Text PDF

The genus Grewia are known for their medicinal properties. We isolated and characterized five endophytic fungi from Grewialasiocarpa for in vitro antibacterial and antioxidant activities. Five [Aspergillus fumigatus (MK243397.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!