We present an effective thermoviscous theory of acoustofluidics including pressure acoustics, thermoviscous boundary layers, and streaming for fluids embedded in elastic cavities. By including thermal fields, we thus extend the effective viscous theory by Bach and Bruus [J. Acoust. Soc. Am. 144, 766 (2018)]. The acoustic temperature field and the thermoviscous boundary layers are incorporated analytically as effective boundary conditions and time-averaged body forces on the thermoacoustic bulk fields. Because it avoids resolving the thin boundary layers, the effective model allows for numerical simulation of both thermoviscous acoustic and time-averaged fields in three-dimensional models of acoustofluidic systems. We show how the acoustic streaming depends strongly on steady and oscillating thermal fields through the temperature dependency of the material parameters, in particular the viscosity and the compressibility, affecting both the boundary conditions and spawning additional body forces in the bulk. We also show how even small steady temperature gradients ( ∼1 K/mm) induce gradients in compressibility and density that may result in very high streaming velocities ( ∼1 mm/s) for moderate acoustic energy densities ( ∼100 J/m).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0005005 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
East China University of Science and Technology, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, 130 Meilong Road, 200237, Shanghai, CHINA.
Although heterogeneous Fenton-like processes have attracted widespread attention in wastewater treatment, the mass leached active ions lead to secondary pollution and confuse the demarcation of reaction region. By constructing a constrained completely heterogeneous system and highlighting its reaction region concentrated within the slipping plane of particles, this work achieves efficient organic pollutants degradation without leaching of any free active metal components. Based on the Poisson-Boltzmann equation and electric double layer model, the specific existing of the constrained region is confirmed, and this neglected reaction region between solid interface and slipping plane in traditional heterogeneous Fenton-like reaction is clarified firstly.
View Article and Find Full Text PDFThis Letter describes the first, to the best of our knowledge, demonstration of a velocity measurement by nitric oxide ionization induced flow tagging and imaging (NiiFTI) of a high-enthalpy hypersonic flow utilizing naturally formed nitric oxide. The measurements were conducted in the hypervelocity expansion tunnel (HXT) at Texas A&M University in Mach 8.5 and Mach 10 flows near an ogive test article.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Geophysics and Meteorology, University of Cologne, Pohligstrasse 3, 50969, Cologne, Germany.
Geophysical techniques have become increasingly crucial for characterizing landfills, offering noninvasive methods for subsurface exploration and contamination assessment. In this study, an integrated geophysical approach-utilizing magnetic, electrical resistivity tomography (ERT), and transient electromagnetic (TEM) surveys-was employed to characterize the Weidenpesch landfill in Cologne, Germany and assess potential groundwater contamination. The results from these methods were consistent, effectively delineating the landfill boundaries and identifying possible contamination.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91106.
Aerosol light absorption has been widely considered as a contributing factor to the worsening of particulate pollution in large urban areas, primarily through its role in stabilizing the planetary boundary layer (PBL). Here, we report that absorption-dominated aerosol-radiation interaction can decrease near-surface fine particulate matter concentrations ([PM]) at a large-scale during wintertime haze events. A "warm bubble" effect by the significant heating rate of absorbing aerosols above the PBL top generates a secondary circulation, enhancing the upward motion (downward motion) and the convergence (divergence) in polluted (relatively clean) areas, with a net effect of lowering near-surface [PM].
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Beijing University of Technology, Materials Science and Technology, Pingleyuan 100#, Chaoyang District, 100124, Beijing, CHINA.
Manganese-based (Mn-based) layered oxides have emerged as competitive cathode materials for sodium-ion batteries (SIBs), primarily due to their high energy density, cost-effectiveness, and potential for mass production. However, these materials often suffer from irreversible oxygen redox reactions, significant phase transitions, and microcrack formation, which lead to considerable internal stress and degradation of electrochemical performance. This study introduces a high-entropy engineering strategy for P2-type Mn-based layered oxide cathodes (HE-NMCO), wherein a multi-ingredient cocktail effect strengthens the lattice framework by modulating the local environmental chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!