High-temperature phase transitions in dense germanium.

J Chem Phys

SUPA, School of Physics and Astronomy and CSEC, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom.

Published: May 2021

Through a series of high-pressure x-ray diffraction experiments combined with in situ laser heating, we explore the pressure-temperature phase diagram of germanium (Ge) at pressures up to 110 GPa and temperatures exceeding 3000 K. In the pressure range of 64-90 GPa, we observe orthorhombic Ge-IV transforming above 1500 K to a previously unobserved high-temperature phase, which we denote as Ge-VIII. This high-temperature phase is characterized by a tetragonal crystal structure, space group I4/mmm. Density functional theory simulations confirm that Ge-IV becomes unstable at high temperatures and that Ge-VIII is highly competitive and dynamically stable at these conditions. The existence of Ge-VIII has profound implications for the pressure-temperature phase diagram, with melting conditions increasing to much higher temperatures than previous extrapolations would imply.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0047359DOI Listing

Publication Analysis

Top Keywords

high-temperature phase
12
pressure-temperature phase
8
phase diagram
8
phase transitions
4
transitions dense
4
dense germanium
4
germanium series
4
series high-pressure
4
high-pressure x-ray
4
x-ray diffraction
4

Similar Publications

This study aimed to assess the efficacy and safety of gilteritinib combined with chemotherapy in treating newly diagnosed FLT3-mutated acute myeloid leukemia (AML). We retrospectively collected clinical data from 16 patients newly diagnosed with FLT3-mutated AML at Jiangsu Province Hospital. Patients received induction therapy with the classic "3 + 7" regimen or the VA regimen, and all patients were immediately supplied with gilteritinib after detecting FLT3-ITD/TKD mutations.

View Article and Find Full Text PDF

Aerobic composting with hydrothermal carbonization aqueous phase conditioning: Stabilized active gaseous nitrogen emissions.

J Hazard Mater

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The losses of reactive gaseous nitrogen (N), including ammonia (NH) and nitrous oxide (NO), represent a pressing environmental issue during composting. However, the impact of hydrothermal carbonization aqueous phase (HAP) on compost gaseous N emissions and the underlying mechanisms remain largely unexplored. Herein, Quercus acutissima leaves-derived HAP and its modified HAP (MHAP) were added to the chicken manure compost at 5 % (w/w) and 10 % (w/w) applied rates to observe changes in NH and NO fluxes, compost properties and bacterial communities.

View Article and Find Full Text PDF

Introduction: As climate change advances, the looming threat of dengue fever, intricately tied to rising temperatures, intensifies, posing a substantial and enduring public health challenge in the Philippines. This study aims to investigate the historical and projected excess dengue disease burden attributable to temperature to help inform climate change policies, and guide resource allocation for strategic climate change and dengue disease interventions.

Methods: The study utilized established temperature-dengue risk functions to estimate the historical dengue burden attributable to increased temperatures.

View Article and Find Full Text PDF

Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.

View Article and Find Full Text PDF

Silver chalcogenides exhibit exceptional transport properties but face structural instability at high temperatures, limiting their practical applications. Using AgTe as a model, it is confirm that silver whisker growth above the phase transition renders AgTe unsuitable for thermoelectric applications. Here, the whisker growth mechanism is investigated and propose an inhibition strategy, overcoming a major obstacle in using silver chalcogenides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!