Waiting-time dependent non-equilibrium phase diagram of simple glass- and gel-forming liquids.

J Chem Phys

Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, SLP, Mexico.

Published: May 2021

Under numerous circumstances, many soft and hard materials are present in a puzzling wealth of non-equilibrium amorphous states, whose properties are not stationary and depend on preparation. They are often summarized in unconventional "phase diagrams" that exhibit new "phases" and/or "transitions" in which time, however, is an essential variable. This work proposes a solution to the problem of theoretically defining and predicting these non-equilibrium phases and their time-evolving phase diagrams, given the underlying molecular interactions. We demonstrate that these non-equilibrium phases and the corresponding non-stationary (i.e., aging) phase diagrams can indeed be defined and predicted using the kinetic perspective of a novel non-equilibrium statistical mechanical theory of irreversible processes. This is illustrated with the theoretical description of the transient process of dynamic arrest into non-equilibrium amorphous solid phases of an instantaneously quenched simple model fluid involving repulsive hard-sphere plus attractive square well pair interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0039524DOI Listing

Publication Analysis

Top Keywords

non-equilibrium amorphous
8
non-equilibrium phases
8
phase diagrams
8
non-equilibrium
6
waiting-time dependent
4
dependent non-equilibrium
4
non-equilibrium phase
4
phase diagram
4
diagram simple
4
simple glass-
4

Similar Publications

A general flame aerosol route to kinetically stabilized metal-organic frameworks.

Nat Commun

October 2024

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.

Article Synopsis
  • * The authors present a new method for creating MOFs using non-equilibrium flame aerosol synthesis, which allows for the creation of both nano-crystalline and amorphous MOFs.
  • * This innovative synthesis can produce complex MOFs with multiple metal cations and has the potential for high-performance applications, such as using these materials in catalysts for CO oxidation, making it suitable for scalable industrial production.
View Article and Find Full Text PDF

Ferroelectric β-phase crystals of a polyvinylidene fluoride (PVDF) polymer grown or deposited on a graphene channel of a field effect transistor would induce various degrees of electrostatic doping (, various amounts of charge carriers) into graphene and in turn ON/OFF switching of the device, only if the electric field applied at the gate can reorient its polarization (, the well-aligned F-to-H dipole moments perpendicular to the all-trans polymer backbone) around the polymer backbone. To assess the feasibility of achieving a β-PVDF/graphene ferroelectric field effect transistor or memory device, we mimic (1) the electric-field-controlled PVDF polarization reversal (with density functional theory calculations and molecular dynamics simulations) and (2) the conductance switching of β-PVDF/graphene by PVDF reorientations (F-, H- and FH-down) representing a cycle of gate-voltage sweep (with density functional theory combined with non-equilibrium Green's function formalism). The low energy barrier of the collective synchronous PVDF chain rotation around the backbone (0.

View Article and Find Full Text PDF

Metastable phases of Ag-Si: amorphous Si and Ag-nodule mediated bonding.

Sci Rep

September 2024

F3D, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.

Metastable phases such as supersaturated solid solutions, supercooling, and amorphous phases are well-known in metallurgy. They are often composed in non-equilibrium states and can be transformed into a stable phase by overcoming an energy barrier with driving forces. Particularly, it has been widely used for material strengthening and heterogeneous nucleation of precipitates in solids is mainly induced by heat treatments for supersaturated solid solutions.

View Article and Find Full Text PDF

Origins of complexity in the rheology of Soft Earth suspensions.

Nat Commun

August 2024

Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.

When wet soil becomes fully saturated by intense rainfall, or is shaken by an earthquake, it may fluidize catastrophically. Sand-rich slurries are treated as granular suspensions, where the failure is related to an unjamming transition, and friction is controlled by particle concentration and pore pressure. Mud flows are modeled as gels, where yielding and shear-thinning behaviors arise from inter-particle attraction and clustering.

View Article and Find Full Text PDF

In recent years, much attention has been devoted to understanding the pathways of phase transition between two equilibrium condensed phases (such as liquids and solids). However, the microscopic pathways of transition involving non-equilibrium, non-diffusive amorphous (glassy) phases still remain poorly understood. In this work, we have employed computer simulations, persistence homology (a tool rooted in topological data analysis), and machine learning to probe the microscopic pathway of pressure-induced non-equilibrium transition between the low- and high-density amorphous (LDA and HDA, respectively) ice phases of the TIP4P/2005 and ST2 water models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!