We present an approach for obtaining a molecular orbital picture of the first dipole hyperpolarizability (β) from correlated many-body electronic structure methods. Ab initio calculations of β rely on quadratic response theory, which recasts the sum-over-all-states expression of β into a closed-form expression by calculating a handful of first- and second-order response states; for resonantly enhanced β, damped response theory is used. These response states are then used to construct second-order response reduced one-particle density matrices (1PDMs), which, upon visualization in terms of natural orbitals (NOs), facilitate a rigorous and black-box mapping of the underlying electronic structure with β. We explain the interpretation of different components of the response 1PDMs and the corresponding NOs within both the undamped and damped response theory framework. We illustrate the utility of this new tool by deconstructing β for cis-difluoroethene, para-nitroaniline, and hemibonded OH + HO complex, computed within the framework of coupled-cluster singles and doubles response theory, in terms of the underlying response 1PDMs and NOs for a range of frequencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0049184 | DOI Listing |
Genome Med
January 2025
Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
Background: Despite extensive analysis, the dynamic changes in prostate epithelial cell states during tissue homeostasis as well as tumor initiation and progression have been poorly characterized. However, recent advances in single-cell RNA-sequencing (scRNA-seq) technology have greatly facilitated studies of cell states and plasticity in tissue maintenance and cancer, including in the prostate.
Methods: We have performed meta-analyses of new and previously published scRNA-seq datasets for mouse and human prostate tissues to identify and compare cell populations across datasets in a uniform manner.
Sci Rep
January 2025
School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
In natural environments, most rocks possess internal fissures and are often exposed to diverse external loads arising from engineering activities and ground stress, among other factors. This study aims to explore the influence of different loading rates on the mechanical properties and acoustic emission (AE) characteristics of fissured rocks and to develop an intrinsic damage model. To achieve this, prefabricated fissured rock specimens that mimic natural rocks were prepared.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Hospitality and Tourism Management, Macau University of Science and Technology, Macao, China.
As a novel experiential approach, live streaming at tourist destinations has garnered significant attention and profoundly impacts tourists' travel decisions. This study aims to validate the effects of usefulness, authenticity, and interactivity of destination live streams on the decision-making process of tourists. Grounded in stimulus-organism-response (S-O-R) theory, this research identifies the usefulness, authenticity, and interactivity of destination live streams as the "stimulus," while telepresence and trust as the "organism," with tourists' travel decisions as the "response.
View Article and Find Full Text PDFSci Rep
January 2025
Haohua Hongqingliang Mining Company, Ltd, Ordos, 014300, Inner Mongolia, China.
Caving mining in extra-thick coal seams induces large-scale overburden movement, leading to more intense fracture processes in key strata, more significant surface subsidence, and frequent dynamic disasters in mines. This study, using the N34-2 caving face of the 17th coal seam at Junde Mine as a case study, aims to investigate the time-varying linkage mechanism between surface subsidence, microseismic characteristics, and fracture scales of the overburden's key strata under such mining conditions. Based on Timoshenko's theory, a bearing fracture mode for the overburden's key strata is proposed, and corresponding fracture criteria are established.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
The linear vibronic coupling (LVC) model is an approach for approximating how a molecular Hamiltonian changes in response to small changes in molecular geometry. The LVC framework thus has the ability to approximate molecular Hamiltonians at low computational expense but with quality approaching multiconfigurational calculations, when the change in geometry compared to the reference calculation used to parametrize it is small. Here, we show how the LVC approach can be used to project approximate spin Hamiltonians of a solvated lanthanide complex along a room-temperature molecular dynamics trajectory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!