Download full-text PDF

Source
http://dx.doi.org/10.23736/S0031-0808.21.04430-XDOI Listing

Publication Analysis

Top Keywords

clic1 promotes
4
promotes progression
4
progression cervical
4
cervical cancer
4
cancer pten/pi3k/akt
4
pten/pi3k/akt pathway
4
clic1
1
progression
1
cervical
1
cancer
1

Similar Publications

A CLIC1 network coordinates matrix stiffness and the Warburg effect to promote tumor growth in pancreatic cancer.

Cell Rep

August 2024

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) features substantial matrix stiffening and reprogrammed glucose metabolism, particularly the Warburg effect. However, the complex interplay between these traits and their impact on tumor advancement remains inadequately explored. Here, we integrated clinical, cellular, and bioinformatics approaches to explore the connection between matrix stiffness and the Warburg effect in PDAC, identifying CLIC1 as a key mediator.

View Article and Find Full Text PDF

Retrograde AAV-mediated gene modulation reveals chloride intracellular channel proteins as potent regulators of retinal ganglion cell death.

Exp Neurol

July 2024

Department of Ophthalmology, Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, 5901 Forest Park Rd, Dallas, TX 75235, United States of America. Electronic address:

Most projection neurons, including retinal ganglion cells (RGCs), undergo cell death after axotomy proximal to the cell body. Specific RGC subtypes, such as ON-OFF direction selective RGCs (ooDSGCs) are particularly vulnerable, whereas intrinsically photosensitive RGCs (ipRGCs) exhibit resilience to axonal injury. Through the application of RNA sequencing and fluorescent in situ hybridization, we show that the expression of chloride intracellular channel protein 1 and 4 (Clic1 and Clic4) are highly increased in the ooDSGCs after axonal injury.

View Article and Find Full Text PDF

TIMP1/CHI3L1 facilitates glioma progression and immunosuppression via NF-κB activation.

Biochim Biophys Acta Mol Basis Dis

March 2024

Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China. Electronic address:

Gliomas are highly heterogeneous brain tumours that are resistant to therapies. The molecular signatures of gliomas play a high-ranking role in tumour prognosis and treatment. In addition, patients with gliomas with a mesenchymal phenotype manifest overpowering immunosuppression and sophisticated resistance to treatment.

View Article and Find Full Text PDF

Recent researches reported that neurotrophins can promote glioma growth/invasion but the relevant model for predicting patients' survival in Lower-Grade Gliomas (LGGs) lacked. In this study, we adopted univariate Cox analysis, LASSO regression, and multivariate Cox analysis to determine a signature including five neurotrophin-related genes (NTGs), CLIC1, SULF2, TGIF1, TTF2, and WEE1. Two-sample Mendelian Randomization (MR) further explored whether these prognostic-related genes were genetic variants that increase the risk of glioma.

View Article and Find Full Text PDF

CLIC1 regulation of cancer stem cells in glioblastoma.

Curr Top Membr

November 2023

Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada. Electronic address:

Chloride intracellular channel 1 (CLIC1) has emerged as a therapeutic target in various cancers. CLIC1 promotes cell cycle progression and cancer stem cell (CSC) self-renewal. Furthermore, CLIC1 is shown to play diverse roles in proliferation, cell volume regulation, tumour invasion, migration, and angiogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!