Bio-electrochemical technologies can generate renewable electrical bioenergy from the oxidation of organic materials through the catalytic reactions of the microorganisms while treating the wastewater. In this study, the use of carbon aerogel as a novel catalyst with high porosity (the total pore volume of 1.84 cm g) and high surface area (491.7 m/g) for improving the oxygen reduction reaction (ORR) performance was compared to that of the conventional activated carbon, employed as an air cathode catalyst in bio-electrochemical systems, with the indigenous bacterial consortium. The electrochemical studies revealed the higher power efficiency in the use of carbon aerogel (with the maximum power density and current density of a 675 mWm and 33.1 mAm, respectively), compared to the activated carbon (with the maximum power density and current density of 668.98 mWm and 23.2 mAm, respectively). The performance of the two materials and optimum conditions for electricity production were examined using the Response Surface Method (RSM) as an optimal design method. Statistical analysis confirmed that the carbon aerogel performed better than the activated carbon in power production and facilitated cathodic redox reactions. Comparison of two catalysts showed that the redox reactions occurred in the presence of carbon aerogel more facilitated and in a wider range, produced 1.2 times more current (the maximum 2.1 and 1.69 mA current). Carbon aerogel, with a suitable load absorbance and resistance to oxidation at urban wastewater pH, can be, therefore, coated on electrodes to facilitate the oxidation-reduction reactions and electricity transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2021.1950840DOI Listing

Publication Analysis

Top Keywords

carbon aerogel
20
activated carbon
12
response surface
8
bio-electrochemical systems
8
carbon
8
maximum power
8
power density
8
density current
8
current density
8
redox reactions
8

Similar Publications

Currently, materials with specific, strictly defined functional properties are becoming increasingly important. A promising strategy for achieving these properties involves developing methods that facilitate the formation of hierarchical porous materials that combine micro-, meso-, and macropores in their structure. Macropores facilitate effective mass transfer of substances to the meso- and micropores, where further adsorption or reaction processes can occur.

View Article and Find Full Text PDF

The active site density, intrinsic activity, and supporting substrate of cobalt phosphide catalysts are vital to their performance in alkaline water electrolysis. In this work, a CoP/CoP loaded on cellulose nanofiber-derived carbon aerogels (CP/CCAs) bifunctional electrocatalyst with a three-dimensional network and heterostructure is illustrated through sequential facile hydrothermal, freeze-drying, and phosphorylation processes. The three-dimensional network of carbon aerogels derived from cellulose nanofibers reveals a specific surface area of 183.

View Article and Find Full Text PDF

The demand for sustainable packaging materials is rapidly increasing due to growing environmental concerns over the impact of plastic waste. In this study, biodegradable, porous, lightweight, and high-surface-area microcrystalline cellulose-starch (MCC-S) hybrid aerogels were synthesized via supercritical carbon dioxide (SC-CO) drying. The samples were generated using five different MCC-S weight ratios and characterized for their morphology, crystallinity, and structural and thermal properties.

View Article and Find Full Text PDF
Article Synopsis
  • Heavy metal wastewater is highly toxic even at low levels, posing risks to the environment and human health, necessitating the development of effective treatment methods.
  • MnFeO-loaded bamboo pulp carbon-based aerogel (MCA) is created through freeze-drying and carbonization, and its properties are analyzed using various scientific techniques.
  • MCA shows strong adsorption capabilities for heavy metals Pb, Cu, and Cd, with maximum capacities of 74.38, 84.21, and 73.63 mg/g, indicating its potential for use in wastewater purification.
View Article and Find Full Text PDF

Biomimetic biomass-based composite carbon aerogels with excellent mechanical performance for energy storage and pressure sensing in extreme environments.

J Colloid Interface Sci

December 2024

Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China; Shandong Tonye Photoresist Material Technology CO., LTD, Weifang, 261206, China. Electronic address:

Article Synopsis
  • The research addresses the low mechanical properties of biomass-based carbon aerogels, which limit their use in pressure sensing and energy storage for wearable tech and electronic skin.* -
  • A new supramolecular assembly structure inspired by natural wood was developed, utilizing bacterial cellulose and lignin, enhanced with graphene oxide for better performance.* -
  • The resulting carbon aerogels show remarkable features such as supercompressibility, high elasticity, stable sensor response, and impressive energy storage capabilities, making them ideal for wearable applications, even in extreme conditions.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!