Mechanistic Insights into the P450 TleB-Catalyzed Unusual Intramolecular C-N Bond Formation Involved in the Biosynthesis of Indolactam V.

J Chem Inf Model

School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

Published: July 2021

Indolactam V, a known biosynthetic precursor of indolactam alkaloids, is the main pharmacophore of this family and exhibits potential protein kinase C activation. A key step in the biosynthesis of indolactam V is the formation of an indole-fused nine-membered lactam core by intramolecular C-N bond formation. In this work, we report a computational study of the unique cytochrome P450 TleB enzyme-catalyzed direct and selective C-H bond amination reaction that can generate indolactam V from the dipeptide -methylvalyl-tryptophanol. By performing molecular dynamics simulations and quantum-mechanical/molecular-mechanical calculations, we revealed that the C-H bond amination involves one step of proton transfer from N1-H of the indole ring to the Fe═O unit, one step of hydrogen abstraction of N13-H in the side chain of the substrate by the Fe-OH unit, and diradical coupling, in which two conformational changes of the side chain of the substrate are necessary. In the enzyme-substrate complex of TleB, the N-H bond of the indole ring of the substrate forms a strong hydrogen bond with the Fe═O unit in compound I, and the porphyrin radical cation accepts an electron from the substrate to form the closed-shell electronic configuration. Thus, compound I in the enzyme-substrate complex cannot be described as Fe═O coupled to a porphyrin radical cation, which is different from those of other P450 enzymes. Besides, two stages of conformational changes of the side chains of the substrate may increase the relative energies of reaction intermediates by 10-12 kcal/mol. From the structure point of view, it is the rotatable long side chain of the substrate and the large flexible active pocket of TleB that make the intramolecular diradical coupling feasible. Our findings may provide useful information to further understand the Tleb-catalyzed intramolecular C-H bond amination and the other bio-catalyzed intramolecular diradical coupling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.1c00542DOI Listing

Publication Analysis

Top Keywords

c-h bond
12
bond amination
12
side chain
12
chain substrate
12
diradical coupling
12
intramolecular c-n
8
c-n bond
8
bond formation
8
biosynthesis indolactam
8
indole ring
8

Similar Publications

Tambjamines are complex bipyrrole-containing natural products that possess promising bioactive properties. Although is known to produce both cyclic tambjamine MYP1 and the linear precursor (YP1), the biosynthetic machinery used to catalyze the site-selective oxidative carbocyclization at the unactivated 1° carbon of YP1 has remained unclear. Here, we demonstrate that a three-component Rieske system consisting of an oxygenase (TamC) and two redox partner proteins is responsible for this unprecedented activity on YP1 and potentially, a non-native substrate (BE-18591).

View Article and Find Full Text PDF

Strained spiro-heterocycles (SSH) have gained significant attention within the medicinal chemistry community as promising (sp3)-rich bioisosteres for their aromatic and non-spirocyclic counterparts. We herein report access to an unprecedented spiro-heterocycle - 1,5-dioxaspiro[2.3]hexane.

View Article and Find Full Text PDF

Synergistic effect of scattered rare metals on Pt/CeO for propane oxidative dehydrogenation with CO.

RSC Adv

January 2025

State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China

The oxidative dehydrogenation of propane with CO (CO-ODP) is a green industrial process for producing propene. Cerium oxide-supported platinum-based (Pt/CeO) catalysts exhibit remarkable reactivity toward propane and CO due to the unique delicate balance of C-H and C[double bond, length as m-dash]O bond activation. However, the simultaneous activation and cleavage of C-H, C-C, and C-O bonds on Pt/CeO-based catalysts may substantially impede the selective activation of C-H bonds during the CO-ODP process.

View Article and Find Full Text PDF

Benzo-fused γ-lactams are fundamental in medicinal chemistry, acting as essential elements for various therapeutic agents due to their structural adaptability and capability to enhance biological activity. In their synthesis, transition metals play a pivotal role as catalysts, offering more efficient alternatives to traditional methods by facilitating C-N bond formation through mechanisms like intramolecular coupling. Recent advances have especially spotlighted transition-metal-catalyzed C-H amination reactions for directly converting C(sp)-H to C(sp)-N bonds, streamlining the creation of these compounds.

View Article and Find Full Text PDF

Iron-Catalyzed Cross-Dehydrogenative Coupling.

Molecules

January 2025

Department of Chemistry, Fudan University, Shanghai 200438, China.

This review highlights significant advances in iron-catalyzed cross-dehydrogenative coupling (CDC), a method pivotal for forming carbon-carbon (C-C) bonds directly from C-H bonds. This technique uses iron-a naturally abundant, inexpensive, and environmentally benign transition metal-as a catalyst to facilitate the coupling of two unfunctionalized C-H bonds. This method stands out for avoiding pre-functionalized substrates, reducing both waste and cost in organic synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!