Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single-particle catalytic analysis plays an important role to understand the catalytic mechanism of nanocatalysts. Currently, some methods are used to study the relationship between single-particle catalytic activity and morphology. However, there is still lack of a simple and rapid analysis method for evaluating the catalytic activity of an individual nanocatalyst that freely moves in solution. Here, we proposed a novel single-particle catalytic analysis method for investigating the catalytic activity of a free nanocatalyst. Its working principle is based on the photon burst counting analysis on fluorescent catalytic products of an individual nanocatalyst combined with a microfluidic chip. In this study, we used the reduction reaction of resazurin (RZ) to resorufin (RF) catalyzed by gold nanoparticles (GNPs) as a model. When nonfluorescent RZ molecules in one microchannel of the microfluidic chip mixed with the GNPs flowing in another channel under the control of flow rates, each individual photon burst from the catalytic product RF by GNPs was measured in real time with a constructed flow single-particle catalytic analysis (SPCA) system. With the method, the obtained intensity of each photon burst reflects the capacity of a particle to catalyze RZ molecules into RF(s). The number of photon burst within sampling time reflects the particle number of GNPs with catalytic activity. The experimental conditions including the mixing mode of the nanocatalyst and the substrate, the flow rate, RZ concentration, and detection time were optimized. Finally, the method was successfully used to study the catalytic activity of GNPs with different sizes and morphologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c01199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!