A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-Particle Catalytic Analysis by a Photon Burst Counting Technique Combined with a Microfluidic Chip. | LitMetric

Single-Particle Catalytic Analysis by a Photon Burst Counting Technique Combined with a Microfluidic Chip.

Anal Chem

School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.

Published: July 2021

Single-particle catalytic analysis plays an important role to understand the catalytic mechanism of nanocatalysts. Currently, some methods are used to study the relationship between single-particle catalytic activity and morphology. However, there is still lack of a simple and rapid analysis method for evaluating the catalytic activity of an individual nanocatalyst that freely moves in solution. Here, we proposed a novel single-particle catalytic analysis method for investigating the catalytic activity of a free nanocatalyst. Its working principle is based on the photon burst counting analysis on fluorescent catalytic products of an individual nanocatalyst combined with a microfluidic chip. In this study, we used the reduction reaction of resazurin (RZ) to resorufin (RF) catalyzed by gold nanoparticles (GNPs) as a model. When nonfluorescent RZ molecules in one microchannel of the microfluidic chip mixed with the GNPs flowing in another channel under the control of flow rates, each individual photon burst from the catalytic product RF by GNPs was measured in real time with a constructed flow single-particle catalytic analysis (SPCA) system. With the method, the obtained intensity of each photon burst reflects the capacity of a particle to catalyze RZ molecules into RF(s). The number of photon burst within sampling time reflects the particle number of GNPs with catalytic activity. The experimental conditions including the mixing mode of the nanocatalyst and the substrate, the flow rate, RZ concentration, and detection time were optimized. Finally, the method was successfully used to study the catalytic activity of GNPs with different sizes and morphologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c01199DOI Listing

Publication Analysis

Top Keywords

single-particle catalytic
20
photon burst
20
catalytic activity
20
catalytic analysis
16
microfluidic chip
12
catalytic
11
burst counting
8
combined microfluidic
8
analysis method
8
individual nanocatalyst
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!