Aberrant autoantibody production is characteristic of systemic lupus erythematosus (SLE), but follicular regulatory T (TFR) cells can potentially suppress this abnormality. We investigate functional changes in TFR cells from SLE patients. Circulating TFR cells were collected from 19 SLE patients and 14 healthy controls (HC) to compare molecular expression and in-vitro suppressive capacity of follicular helper T (TFH) cell proliferation. To reveal the stability of forkhead box protein 3 (FoxP3) in TFR, pyrosequencing of conserved non-coding sequence (CNS) 2 at the FoxP3 gene locus was performed. We then tested interleukin (IL)-2 in SLE-TFR cells to check restoration of suppressor function. Programmed cell death 1 (PD-1) expression in SLE-TFR cells was positively correlated with anti-DNA antibody levels and disease activity. These cells had impaired suppressive function for TFH cells with decreased expression of suppression mediators FoxP3, cytotoxic T lymphocyte antigen 4 (CTLA-4) and IL-2 receptor alpha (IL-2Rα). Pyrosequencing identified hyper-methylation in CNS2 region of SLE-TFR cells comparing to HC. With in-vitro IL-2 stimulation, PD-1 expression of TFR cells significantly decreased, together with increased expression of FoxP3 and CTLA-4, especially at a low dose. Thus, SLE-TFR cells have functionally defective to TFH suppression, but low-dose IL-2 therapy might be useful to restore this ability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446397 | PMC |
http://dx.doi.org/10.1111/cei.13643 | DOI Listing |
J Immunother Cancer
January 2025
Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
Background: Anti-programmed cell death protein 1 (anti-PD-1) antibodies have achieved revolutionary success in cancer therapy. However, the impact of anti-PD-1 therapy on host humoral immunity in humans during cancer immunotherapy requires further investigation.
Methods: We evaluated immunoglobulin titers by ELISA and screened the immune landscape of immune cells from 25 healthy donors and 50 cases including 25 new-onset hepatocellular carcinoma (HCC) patients prior to systemic treatment and 25 HCC patients undergoing anti-PD-1 therapy by multicolor flow cytometry.
Toxicon
January 2025
School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China; Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China. Electronic address:
Deoxynivalenol (DON), a mycotoxin that severely contaminates agri-food products can cause hepatotoxicity. Ferroptosis is an iron-dependent form of cell death, and the liver is an important organ for iron accumulation. 18beta-glycyrrhetinic acid (GA) has anti-ferroptosis and hepatoprotective effects.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, People's Republic of China. Electronic address:
Ethnopharmacological Relevance: Schisandra chinensis (Turcz.) Baill (S. chinensis), first recorded in Shennong's Classic of the Materia Medica, is described as a "top grade medicine".
View Article and Find Full Text PDFiScience
December 2024
Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
Regulatory T cells (Tregs) require IL-2 for survival in the periphery, yet how IL-2 shapes Treg heterogeneity remains poorly defined. Here we show that inhibition of IL-2R signaling in post-thymic Tregs leads to a preferential early loss of circulating Tregs (cTregs). Gene expression of cTregs was more dependent on IL-2R signaling than effector Tregs (eTregs).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engager) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!