has developed extensive resistance to numerous antimycobacterial agents used in the treatment of tuberculosis. Insufficient intracellular accumulation of active moieties allows for selective survival of mycobacteria with drug resistance mutations and accordingly promotes the development of microbial drug resistance. Discovery of compounds with new mechanisms of action and physicochemical properties that promote intracellular accumulation, or compounds that act synergistically with other antimycobacterial drugs, has the potential to reduce and prevent further drug resistance. To this end, antimycobacterial activity, mechanism of action, and synergism in combination therapy were investigated for a series of polycyclic amine derivatives. Compound selection was based on the presence of moieties with possible antimycobacterial activity, the inclusion of bulky lipophilic carriers to promote intracellular accumulation, and previously demonstrated bioactivity that potentially support inhibition of efflux pump activity. The most potent antimycobacterial demonstrated a minimum inhibitory concentration (MIC) of 9.6 M against H37Rv. Genotoxicity and inhibition of the cytochrome respiratory complex were excluded as mechanisms of action for all compounds. Inhibition of cell wall synthesis was identified as a likely mechanism of action for the two most active compounds ( and ). Compounds and demonstrated synergistic activity with the known Rv1258c efflux pump substrate, spectinomycin, pointing to possible efflux pump inhibition. For this series, the nature of the side chain, rather than the type of polycyclic carrier, seems to play a determining role in the antimycobacterial activity and cytotoxicity of the compounds. Contrariwise, the nature of the polycyclic carrier, particularly the azapentacycloundecane cage, appears to promote synergistic activity. Results point to the possibility of combining an azapentacycloundecane carrier with a side chain that promotes antimycobacterial activity to develop dual acting molecules for the treatment of
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238621 | PMC |
http://dx.doi.org/10.1155/2021/5583342 | DOI Listing |
PLoS One
January 2025
National Institute of Public Health of Mexico, Center for Evaluation and Surveys Research, Cuernavaca, Morelos, Mexico.
Introduction: Tackling the inertia of growing threat of antimicrobial resistance (AMR) requires changes in how antibiotics are prescribed and utilized. The monitoring of antimicrobial prescribing in hospitals is a critical component in optimizing antibiotic use. Point prevalence surveys (PPSs) enable the surveillance of antibiotic prescribing at the patient level in small hospitals that lack the resources to establish antimicrobial stewardship programs (ASP).
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institut de l'Audition/Institut Pasteur, Paris, France.
Background: Memory consolidation is an essential process for our everyday lives that is severely disrupted in Alzheimer's Disease (AD). Memories are initially encoded in the hippocampus before being consolidated in the neocortex by synaptic plasticity processes that depend on protein synthesis. However, how molecular pathways affect synaptic signalling during memory consolidation in health and disease is unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pittsburgh, Pittsburgh, PA, USA.
Background: The bi-directional autophagy and inflammation network becomes progressively dysregulated with age, with systemic inflammation as a biomarker of this dysregulation including in Alzheimer's Disease (AD). We hypothesize that interventions which target the shared feature of systemic inflammation in the biology of aging and AD, via regulation of the autophagy-inflammation network, will prevent the conversion to disease pathogenesis in AD as well as improve healthspan and longevity in aging populations. While previous studies report benefits of mTOR inhibition including rapamycin in transgenic mouse models of familial AD, the present studies aim to evaluate this pathway in a model of sporadic, late onset AD (LOAD) and test the contribution of AMP-activated protein kinase (AMPK) as a critical regulator of the mTOR pathway.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Background: Studies investigating mTOR signaling provide compelling and reproducible evidence of the extension of lifespan across model organisms by treatment with the mTOR inhibitor rapamycin, and preclinical data suggests neuroprotective benefits of rapamycin in models of Alzheimer's disease (AD). Rapamycin has potent immunosuppressive and autophagy activating effects though it remains unknown whether rapamycin's neuroprotective and lifespan enhancing effects are achieved through modulating systemic inflammation, augmenting autophagy, or via some combination of modifying both these factors. Relatedly, the cellular and molecular mechanisms that contribute to rapamycin's neuroprotective effects in AD remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!