The objective of this placebo-controlled, double-blind, randomized study (designed according to evidence-based medicine standards) was to determine the effect of 30-day administration of powdered brown algae, (ProDen PlaqueOff, SwedenCare AB, Sweden), on saliva metabolomes in dogs. Sixty client-owned dogs underwent professional dental cleaning and were randomly subdivided into two groups receiving daily powdered brown algae , or a placebo (microcrystalline cellulose in powder), adjusted to their bodyweight. After a comprehensive oral health assessment and professional dental cleaning, which were both performed under general anesthesia, clinical assessments for gingivitis, plaque, and calculus were conducted. Saliva samples were collected at Day 0 and Day 30 of supplementation. Whole saliva is a mixed fluid that is derived predominantly from the major salivary glands but it also contains numerous other constituents. Additionally, its composition varies on whether salivary secretion is basal or stimulated. Authors put efforts to avoid contamination of saliva by other constituents and character of saliva was basal. Quadrupole time-of-flight (QTOF) mass spectrometer was used to conduct analysis of the saliva samples. Metabolomic analyses identified clear changes after 30 days of supplementation, and the direction of these changes was completely different than in dogs that received a placebo treatment during the same period. The positive clinical effect of 30 days of supplementation on oral health status in dogs described in previous publication combined with the absence of some metabolites in the saliva of dogs on day 30 of supplementation suggest that brown algae inhibit or turn off some pathways that could enhance plaque or calculus development. The exact mechanism of is still unclear and warrants further study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258245PMC
http://dx.doi.org/10.3389/fvets.2021.681951DOI Listing

Publication Analysis

Top Keywords

brown algae
12
saliva
8
powdered brown
8
professional dental
8
dental cleaning
8
oral health
8
plaque calculus
8
saliva samples
8
day supplementation
8
days supplementation
8

Similar Publications

brown seaweed () is reported to exhibit several biological activities that promote human health, but it does not have the ability to withstand harsh environmental conditions, such as high temperatures and oxygen exposure. Encapsulation of extraction through different techniques is known to, optimize physicochemical properties, biological activities, maintain stability, and is an effective way to improve the shelf life of different foods. In the present study, the encapsulation of SIE was carried out by the freeze-drying method using maltodextrin, whey protein isolate (WPI), and chitosan.

View Article and Find Full Text PDF

In this study, the anti-inflammatory effect of the hot water extract of Endarachne binghamiae (EB-WE), a type of marine brown algae, was investigated in LPS-stimulated RAW 264.7 cells and an acute lung injury (ALI) mouse model induced by intranasal LPS administration. Treatment with EB-WE significantly inhibited NO and pro-inflammatory cytokine (TNF-a and IL-6) production in LPS-stimulated RAW 264.

View Article and Find Full Text PDF

Vanadium-Dependent Haloperoxidase Gene Evolution in Brown Algae: Evidence for Horizontal Gene Transfer.

Int J Mol Sci

January 2025

Key Lab of Breeding Biotechnology and Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Compared with green plants, brown algae are characterized by their ability to accumulate iodine, contributing to their ecological adaptability in high-iodide coastal environments. Vanadium-dependent haloperoxidase (V-HPO) is the key enzyme for iodine synthesis. Despite its significance, the evolutionary origin of V-HPO genes remains underexplored.

View Article and Find Full Text PDF

Phlorofucofuroeckol-A: A Natural Compound with Potential to Attenuate Inflammatory Diseases Caused by Airborne Fine Dust.

Medicina (Kaunas)

January 2025

Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea.

: Persistent exposure to airborne fine dust (FD) particles contributing to air pollution has been linked to various human health issues, including respiratory inflammation, allergies, and skin diseases. We aimed to identify potential seaweed anti-inflammatory bioactive reagents and determine their effects on systemic inflammatory responses induced by FD particles. : While exploring anti-inflammatory bioactive reagents, we purified compounds with potential anti-inflammatory effects from the seaweed extracts of , , and .

View Article and Find Full Text PDF

Effect of Dietary Supplementation of Meal on Production and Meat Quality Traits of Lambs.

Animals (Basel)

January 2025

Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4780000, Chile.

Worldwide, there are reports indicating that sheep raised in insular systems spontaneously consume seaweed. In the southern hemisphere, there exists , a brown seaweed that possesses minerals and fatty acids that could improve some aspects of sheep production and meat quality, respectively. However, the consumption of this algae in lambs has been scarcely studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!