Intervertebral disc degeneration (IDD) is the primary culprit of low back pain and renders heavy social burden worldwide. Pyroptosis is a newly discovered form of programmed cell death, which is also involved in nucleus pulposus (NP) cells during IDD progression. Moderate autophagy activity is critical for NP cell survival, but its relationship with pyroptosis remains unknown. This study is aimed at investigating the relationship between autophagy and pyroptotic cell death. The pyroptosis executor N-terminal domain of gasdermin D (GSDMD-N) and inflammation-related proteins were measured in lipopolysaccharide- (LPS-) treated human NP cells. Inhibition of autophagy by siRNA transfection and chemical drugs aggravated human NP cell pyroptosis. Importantly, we found that the autophagy-lysosome pathway and not the proteasome pathway mediated the degradation of GSDMD-N as lysosome dysfunction promoted the accumulation of cytoplasmic GSDMD-N. Besides, P62/SQSTM1 colocalized with GSDMD-N and mediated its degradation. The administration of the caspase-1 inhibitor VX-765 could reduce cell pyroptosis as confirmed in a rat disc IDD model , whereas ATG5 knockdown significantly accelerated the progression of IDD. In conclusion, our study indicated that autophagy protects against LPS-induced human NP cell pyroptosis via a P62/SQSTM1-mediated degradation mechanism and the inhibition of pyroptosis retards IDD progression . These findings deepen the understanding of IDD pathogenesis and hold implications in unraveling therapeutic targets for IDD treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238599PMC
http://dx.doi.org/10.1155/2021/5584447DOI Listing

Publication Analysis

Top Keywords

cell pyroptosis
16
nucleus pulposus
8
pyroptosis
8
pyroptosis retards
8
intervertebral disc
8
disc degeneration
8
cell death
8
idd progression
8
human cell
8
mediated degradation
8

Similar Publications

Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.

View Article and Find Full Text PDF

Purpose: Dry eye disease (DED) is a common ocular surface inflammatory disease with a complex pathogenesis. Herein, the role and effect of gasdermin E (GSDME) in DED pathogenesis were explored.

Methods: In vitro, flow cytometry, Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to determine the effects of hyperosmotic stress on pyroptosis, apoptosis, and cell viability in human corneal epithelial cells (HCECs).

View Article and Find Full Text PDF

Background: Neuroinflammation is one of the essential pathogeneses of cognitive damage suffering from sepsis-associated encephalopathy (SAE). Lots of evidences showed the microglia presented mitochondrial fragmentation during SAE. This study investigated the protective effects and novel mechanisms of inhibiting microglia mitochondrial fragmentation via mitochondrial division inhibitor 1 (Mdivi-1) on cognitive damage in SAE.

View Article and Find Full Text PDF

SMAC-armed oncolytic virotherapy enhances the anticancer activity of PD1 blockade by modulating PANoptosis.

Biomark Res

January 2025

Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.

Background: Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment.

Methods: The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation, tissue damage, and fibrosis, significantly affecting the quality of life. While there are currently some effective treatments available, they often come with side effects. There is an urgent need to find new treatments that can further improve therapeutic outcomes and reduce side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!