One-step synthesis of imidazoles from Asmic (anisylsulfanylmethyl isocyanide).

Beilstein J Org Chem

Department of Chemistry, Drexel University, 32 South 32nd St., Philadelphia PA 19104, USA.

Published: June 2021

Substituted imidazoles are readily prepared by condensing the versatile isocyanide Asmic, anisylsulfanylmethylisocyanide, with nitrogenous π-electrophiles. Deprotonating Asmic with lithium hexamethyldisilazide effectively generates a potent nucleophile that efficiently intercepts nitrile and imine electrophiles to afford imidazoles. In situ cyclization to the imidazole is promoted by the conjugate acid, hexamethyldisilazane, which facilitates the requisite series of proton transfers. The rapid formation of imidazoles and the interchange of the anisylsulfanyl for hydrogen with Raney nickel make the method a valuable route to mono- and disubstituted imidazoles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8239262PMC
http://dx.doi.org/10.3762/bjoc.17.106DOI Listing

Publication Analysis

Top Keywords

imidazoles
5
one-step synthesis
4
synthesis imidazoles
4
imidazoles asmic
4
asmic anisylsulfanylmethyl
4
anisylsulfanylmethyl isocyanide
4
isocyanide substituted
4
substituted imidazoles
4
imidazoles prepared
4
prepared condensing
4

Similar Publications

The first carbocyclic gallylene [(ADC)Ga(GaI)] and bis-gallylene [(ADC)Ga] (ADC = PhC{N(Dipp)C}; Dipp = 2,6-iPrCH) featuring a central CGa ring annulated between two 1,3-imidazole rings are prepared by KC reductions of [(ADC)GaI]. Treatment of [(ADC)Ga] with Fe(CO) affords complex [(ADC)GaFe(CO)] in which each Ga(i) atom serves as a two-electron donor. [(ADC)Ga] activates white phosphorus (P) and the C -F bond of aryl fluorides (ArF) to yield compounds [(ADC)Ga(P)] and -/-[(ADC)GaF(Ar)], respectively.

View Article and Find Full Text PDF

The packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.

View Article and Find Full Text PDF

Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.

Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.

View Article and Find Full Text PDF

A simple, fast, and cost-effective colorimetric nitrite (NO) sensor based on ZIF-67-derived CoO nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO sensitivity (0.

View Article and Find Full Text PDF

Heterocyclic compounds are increasingly used in medicinal chemistry because they are the main components of many biological processes and materials. Benzimidazole remains the core center of the heterocyclic chemical group, with essential traits such as six-five-member connected rings and two nitrogen atoms at the 1,3 position in a six-membered benzene and five-membered imidazole- fused ring system. Molecules with benzimidazole derivatives serve important functions as therapeutic agents and have shown excellent results in clinical and biological research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!