Genome walking (GW), a strategy for capturing previously unsequenced DNA fragments that are in proximity to a known sequence tag, is currently predominantly based on PCR. Recently developed PCR-based methods allow for combining of sequence-specific primers with designed capturing primers capable of annealing to unknown DNA targets, thereby offering the rapidity and effectiveness of PCR. This study presents a methodological improvement to the previously described GW technique known as palindromic sequence-targeted PCR (PST-PCR). Like PST-PCR, this new method (called PST-PCR v.2) relies on targeting of capturing primers to palindromic sequences arbitrarily present in natural DNA templates. PST-PCR v.2 consists of two rounds of PCR. The first round uses a combination of one sequence-specific primer with one capturing (PST) primer. The second round uses a combination of a single (preferred) or two universal primers; one anneals to a 5' tail attached to the sequence-specific primer and the other anneals to a different 5' tail attached to the PST primer. The key advantage of PST-PCR v.2 is the convenience of using a single universal primer with invariable sequences in GW processes involving various templates. The entire procedure takes approximately 2-3 h to produce the amplified PCR fragment, which contains a portion of a template flanked by the sequence-specific and capturing primers. PST-PCR v.2 is highly suitable for simultaneous work with multiple samples. For this reason, PST-PCR v.2 can be applied beyond the classical task of GW for studies in population genetics, in which PST-PCR v.2 is a preferred alternative to amplified fragment length polymorphism (AFLP) or next-generation sequencing. Furthermore, the conditions for PST-PCR v.2 are easier to optimize, as only one sequence-specific primer is used. This reduces non-specific random amplified polymorphic DNA (RAPD)-like amplification and formation of non-templated amplification. Importantly, akin to the previous version, PST-PCR v.2 is not sensitive to template DNA sequence complexity or quality. This study illustrates the utility of PST-PCR v.2 for transposon display (TD), which is a method to characterize inter- or intra-specific variability related to transposon integration sites. The transposon sequence in the maize () genome was used as a sequence tag during the TD procedure to characterize the integration sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258406 | PMC |
http://dx.doi.org/10.3389/fpls.2021.691940 | DOI Listing |
Biodivers Data J
January 2025
Dynafor, INRAE, INP, ENSAT, 31326, Castanet Tolosan, France Dynafor, INRAE, INP, ENSAT, 31326 Castanet Tolosan France.
Background: DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for.
View Article and Find Full Text PDFGenome Res
January 2025
The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Amsterdam UMC, Cancer Center Amsterdam
Single-cell long-read sequencing has transformed our understanding of isoform usage and the mutation heterogeneity between cells. Despite unbiased in-depth analysis, the low sequencing throughput often results in insufficient read coverage thereby limiting our ability to perform mutation calling for specific genes. Here, we developed a single-cell Rapid Capture Hybridization sequencing (scRaCH-seq) method that demonstrated high specificity and efficiency in capturing targeted transcripts using long-read sequencing, allowing an in-depth analysis of mutation status and transcript usage for genes of interest.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
() is the primary risk factor in food safety. Herein, a nanogap-assisted surface-enhanced Raman scattering/polymerase chain reaction (SERS/PCR) biosensor coupled with a machine-learning tool was developed for the direct and specific sensing of S. aureus in milk.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
Accurate and sensitive detection of Pax-5a gene is the basis of early diagnosis and prediction of acute leukemia. This research aims to develop a universal dual-mode sensing method enables ultrasensitive gene detection based on smart control of DNA amplification by nucleic acid beacons e to form programmed dendrimer. The Pax-5a target gene triggers the opening of smart gate hairpin probe (Hp), exposing the stem sequence as the primer to bind with padlock probe for rolling circle amplification (RCA).
View Article and Find Full Text PDFJ Biol Chem
December 2024
Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest, 1083 Hungary. Electronic address:
We developed a versatile 'IHC/LCM-Seq' method for spatial transcriptomics of immunohistochemically detected neurons collected with laser-capture microdissection (LCM). IHC/LCM-Seq uses aluminon and polyvinyl sulfonic acid for inventive RNA-preserving strategies to maintain RNA integrity in free-floating sections of 4% formaldehyde-fixed brains. To validate IHC/LCM-Seq, we first immunostained and harvested striatal cholinergic interneurons with LCM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!